论文标题

依次学习:模型比较和视觉分析框架

Learning-From-Disagreement: A Model Comparison and Visual Analytics Framework

论文作者

Wang, Junpeng, Wang, Liang, Zheng, Yan, Yeh, Chin-Chia Michael, Jain, Shubham, Zhang, Wei

论文摘要

每天都会生产出快速增长的分类模型,也引入了许多模型解释和比较解决方案。例如,石灰和外形可以解释哪些输入功能对分类器的输出预测有更多的贡献。可以使用不同的数值指标(例如精度)来轻松比较两个分类器。但是,很少有作品可以将数据功能与对另一个分类器的贡献相比,可以解释数据功能对分类器的贡献。这种比较解释可以帮助披露两个分类器之间的基本差异,在不同特征条件下选择分类器以及更好的合奏两个分类器。为了实现这一目标,我们提出了一个学习中的学习(LFD)框架,以视觉上比较两个分类模型。具体而言,LFD通过与两个分类器相比的不同意预测来确定数据实例,并训练一个歧视者,以从不同意的实例中学习。由于可能无法使用两个分类器的培训功能,因此我们根据分类器的某些假设提出的一组元功能来训练鉴别器,以探究其行为。用不同的元功能的塑形值来解释训练有素的歧视者,我们为比较的分类器提供了可行的见解。此外,我们介绍了多个指标,以从不同的角度介绍元功能的重要性。有了这些指标,一个人可以轻松地识别两个分类器中最互补行为的元功能,并使用它们来更好地整合分类器。我们专注于金融服务和广告行业中的二进制分类模型,以证明我们提出的框架和可视化的功效。

With the fast-growing number of classification models being produced every day, numerous model interpretation and comparison solutions have also been introduced. For example, LIME and SHAP can interpret what input features contribute more to a classifier's output predictions. Different numerical metrics (e.g., accuracy) can be used to easily compare two classifiers. However, few works can interpret the contribution of a data feature to a classifier in comparison with its contribution to another classifier. This comparative interpretation can help to disclose the fundamental difference between two classifiers, select classifiers in different feature conditions, and better ensemble two classifiers. To accomplish it, we propose a learning-from-disagreement (LFD) framework to visually compare two classification models. Specifically, LFD identifies data instances with disagreed predictions from two compared classifiers and trains a discriminator to learn from the disagreed instances. As the two classifiers' training features may not be available, we train the discriminator through a set of meta-features proposed based on certain hypotheses of the classifiers to probe their behaviors. Interpreting the trained discriminator with the SHAP values of different meta-features, we provide actionable insights into the compared classifiers. Also, we introduce multiple metrics to profile the importance of meta-features from different perspectives. With these metrics, one can easily identify meta-features with the most complementary behaviors in two classifiers, and use them to better ensemble the classifiers. We focus on binary classification models in the financial services and advertising industry to demonstrate the efficacy of our proposed framework and visualizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源