论文标题

相关信息的神经网络:一种新的机器学习框架,可预测微通道的压力下降

Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

论文作者

Montanez-Barrera, J. A., Barroso-Maldonado, J. M., Bedoya-Santacruz, A. F., Mota-Babiloni, Adrian

论文摘要

在热分析和低温热交换器的几何设计中,强迫沸腾现象的准确压降估计很重要。但是,当前预测压降的方法存在两个问题之一:缺乏对不同情况的准确性或概括。在这项工作中,我们介绍了相关的信息神经网络(COINN),这是应用人工神经网络(ANN)技术与成功的压降相关性作为映射工具相结合的新范式,以预测微通道中的二旋转混合物的压降。所提出的方法是受转移学习的启发,该方法在减少数据集的深度学习问题中高度使用。我们的方法通过将压力下降的Sun&Mishima相关性转移到ANN来提高ANN的性能。具有物理和现象学对微通道压降的相关性大大提高了ANN的性能和概括能力。最终结构由三个输入组成:混合蒸气质量,微通道内径和可用的压降相关性。结果表明,使用相关的信息方法获得的好处预测用于训练的实验数据和后验测试,平均相对误差(MRE)为6%,低于Sun&Mishima相关性13%。此外,该方法可以扩展到其他混合物和实验设置,这是使用ANN用于传热应用的其他方法中的缺少特征。

Accurate pressure drop estimation in forced boiling phenomena is important during the thermal analysis and the geometric design of cryogenic heat exchangers. However, current methods to predict the pressure drop have one of two problems: lack of accuracy or generalization to different situations. In this work, we present the correlated-informed neural networks (CoINN), a new paradigm in applying the artificial neural network (ANN) technique combined with a successful pressure drop correlation as a mapping tool to predict the pressure drop of zeotropic mixtures in micro-channels. The proposed approach is inspired by Transfer Learning, highly used in deep learning problems with reduced datasets. Our method improves the ANN performance by transferring the knowledge of the Sun & Mishima correlation for the pressure drop to the ANN. The correlation having physical and phenomenological implications for the pressure drop in micro-channels considerably improves the performance and generalization capabilities of the ANN. The final architecture consists of three inputs: the mixture vapor quality, the micro-channel inner diameter, and the available pressure drop correlation. The results show the benefits gained using the correlated-informed approach predicting experimental data used for training and a posterior test with a mean relative error (mre) of 6%, lower than the Sun & Mishima correlation of 13%. Additionally, this approach can be extended to other mixtures and experimental settings, a missing feature in other approaches for mapping correlations using ANNs for heat transfer applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源