论文标题

晶体立方碳CCC(N)和层周期图LCG(N,K)的一些分辨集的最小数量

The minimum number of some resolving sets for the Crystal Cubic Carbon CCC(n) and the Layer Cycle Graph LCG(n, k)

论文作者

Liu, Jia-Bao, Zafari, Ali

论文摘要

确定图理论中解决集合集的问题具有悠久的历史,因为它在化学,机器人导航,组合优化和利用图像中具有许多应用,在图像的模式识别和处理中,这也为建立了理论提供了动机。特别是,众所周知,这些问题很难。在目前的工作中,首先,我们通过一种新方法来定义水晶立方碳$ ccc(n)$的结构,我们将找到最小数量的双重分辨套装和强大的分辨率集,用于水晶立方碳$ ccc(n)$。此外,我们构建了$ n+σ_{p = 2}^{k} n^2(n-1)^{p-2} $的新的订单图,由$ lcg(n,k)$表示,并回顾带有参数$ n $ n $ n $ k $的图层周期图。此外,我们将计算层周期图$ LCG(N,K)$的一些分辨率集的最小数量。

The problem of determining resolving sets in graph theory has a long history, as it has many applications in chemistry, robot navigation, combinatorial optimization and utilization of the idea in pattern recognition and processing of images that also provide motivation for founding the theory. Especially, it is well known that these problems are NP hard. In the present work, first we define the structure of the crystal cubic carbon $CCC(n)$ by a new method, and we will find the minimum number of doubly resolving sets and strong resolving sets for the crystal cubic carbon $CCC(n)$. Also, we construct a new class of graphs of order $n+ Σ_{p=2}^{k}n^2(n-1)^{p-2}$, is denoted by $LCG(n, k)$ and recall that the layer cycle graph with parameters $n$ and $k$. Moreover, we will compute the minimum number of some resolving sets for the layer cycle graph $LCG(n, k)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源