论文标题

Corona KH-4自动处理的管道(1962-1972)立体声图像

A pipeline for automated processing of Corona KH-4 (1962-1972) stereo imagery

论文作者

Ghuffar, Sajid, Bolch, Tobias, Rupnik, Ewelina, Bhattacharya, Atanu

论文摘要

1962 - 1972年的Corona KH-4侦察卫星任务获得了全景图像,高空间分辨率为1.8-7.5 m。由于处理全景成像几何形状,薄膜扭曲以及电率图像的元数据的可用性有限,因此尚未利用800,000多个解密的电晕图像的潜力。本文介绍了电晕立体声管道(COSP):用于处理电晕KH-4立体声全景图像的管道。 COSP将基于深度学习的功能匹配器Superglue UTLE,以自动匹配Corona KH-4图像和最近的卫星图像之间的特征点,以生成地面控制点(GCP)。为了建模全景KH-4相机的成像几何形状和扫描运动,采用了由经过依赖的外部方向参数组成的严格摄像机模型。结果表明,使用Corona图像的整个帧,使用良好分布的GCP的束调整会导致平均标准偏差(SD)小于2像素。 GCPS和Y-Parallax在异地重采样图像中的图像残差的失真模式表明,由于长期存储而导致的薄膜变形是系统偏差的可能原因。与SRTM DEM相比,使用COSP计算的电晕DEM在大约面积上达到了〜4 m的高度差异的归一化绝对偏差(NMAD)。 4000 $ km^2 $。我们表明,所提出的管道可以应用于涉及高浮雕和冰川地形的复杂场景序列,并且可以使用所得的DEM来计算大面积的长期冰川高度变化。

The Corona KH-4 reconnaissance satellite missions from 1962-1972 acquired panoramic stereo imagery with high spatial resolution of 1.8-7.5 m. The potential of 800,000+ declassified Corona images has not been leveraged due to the complexities arising from handling of panoramic imaging geometry, film distortions and limited availability of the metadata required for georeferencing of the Corona imagery. This paper presents Corona Stereo Pipeline (CoSP): A pipeline for processing of Corona KH-4 stereo panoramic imagery. CoSP utlizes a deep learning based feature matcher SuperGlue to automatically match features point between Corona KH-4 images and recent satellite imagery to generate Ground Control Points (GCPs). To model the imaging geometry and the scanning motion of the panoramic KH-4 cameras, a rigorous camera model consisting of modified collinearity equations with time dependent exterior orientation parameters is employed. The results show that using the entire frame of the Corona image, bundle adjustment using well-distributed GCPs results in an average standard deviation (SD) of less than 2 pixels. The distortion pattern of image residuals of GCPs and y-parallax in epipolar resampled images suggest that film distortions due to long term storage as likely cause of systematic deviations. Compared to the SRTM DEM, the Corona DEM computed using CoSP achieved a Normalized Median Absolute Deviation (NMAD) of elevation differences of ~4 m over an area of approx. 4000 $km^2$. We show that the proposed pipeline can be applied to sequence of complex scenes involving high relief and glacierized terrain and that the resulting DEMs can be used to compute long term glacier elevation changes over large areas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源