论文标题

相互作用的步行滴剂的统计自组织在限制潜力中

Statistical self-organization of a gas of interacting walking drops in a confining potential

论文作者

Hélias, Adrien, Labousse, Matthieu

论文摘要

在垂直振动的表面上弹跳的液滴可以通过站立波和沿流体界面行驶的前进。该系统称为行走滴在宏观尺度上形成非量子波粒子的关联。一个粒子的动力学触发了许多研究,并在过去十年中导致了壮观的实验结果。我们从数值上研究了步行者气体的动力学,即,在存在对颗粒上的狭窄电势的存在下,在无界的流体界面上演变的大量步行液滴。我们表明,即使单个轨迹不稳定,系统也会呈现出明确定义的内部结构,这对于参数变化(例如下降数量,内存时间和浴缸半径)仍然不变。我们通过波的对称性来合理化这种非平稳的自组织,并表明振荡对势形成了活跃物质的波浪集体状态。

A drop bouncing on a vertically-vibrated surface may self-propel forward by standing waves and travels along a fluid interface. This system called walking drop forms a non-quantum wave-particle association at the macroscopic scale. The dynamics of one particle has triggered many investigations and has resulted in spectacular experimental results in the last decade. We investigate numerically the dynamics of a gas of walkers, i.e. a large number of walking drops evolving on a unbounded fluid interface in the presence of a confining potential acting on the particles. We show that even if the individual trajectories are erratic, the system presents well-defined ordered internal structure that remains invariant to parameter variations such as the number of drops, the memory time and the bath radius. We rationalize such non-stationary self-organization in terms of the symmetry of the waves and show that oscillatory pair potentials form a wavy collective state of active matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源