论文标题

使用基于卡尔曼滤波器的子空间识别的近海近海风力涡轮机的识别

Damping Identification of an Operational Offshore Wind Turbine using Kalman filter-based Subspace Identification

论文作者

van Vondelen, Aemilius A W, Iliopoulos, Alexandros, Navalkar, Sachin T, van der Hoek, Daan C, van Wingerden, Jan-Willem

论文摘要

操作模态分析(OMA)为海上风力涡轮机(OWT)的结构动力学提供了基本见解。在这些动力学中,阻尼被认为是一个特别重要的参数,因为它控制了固有频率下响应的大小。违反经典OMA算法的固定白噪声激发要求,由于转子旋转引起的谐波激发而导致操作OWT的识别。最近,提出了一种新型算法,该算法通过使用Kalman滤波器估算谐波下的信号来减轻谐波,并正交从响应信号中删除该信号,然后使用随机子空间识别算法来识别系统。在本文中,该算法对使用具有两个加速度计水平的经济传感器设置从多兆瓦操作的元素获得的现场数据进行了测试。可以区分前三个塔弯曲模式,通过算法中使用的LQ分解,可以通过串联多个数据集来进一步改善识别结果。进行了与已建立的谐波降低算法的比较,即修改的最小二乘复合指数和多键的比较以验证结果。

Operational Modal Analysis (OMA) provides essential insights into the structural dynamics of an Offshore Wind Turbine (OWT). In these dynamics, damping is considered an especially important parameter as it governs the magnitude of the response at the natural frequencies. Violation of the stationary white noise excitation requirement of classical OMA algorithms has troubled the identification of operational OWTs due to harmonic excitation caused by rotor rotation. Recently, a novel algorithm was presented that mitigates harmonics by estimating a harmonic subsignal using a Kalman filter and orthogonally removing this signal from the response signal, after which the Stochastic Subspace Identification algorithm is used to identify the system. In this paper, the algorithm is tested on field data obtained from a multi-megawatt operational OWT using an economical sensor setup with two accelerometer levels. The first three tower bending modes could be distinguished, and, through the LQ-decomposition used in the algorithm, the identification results could be improved further by concatenating multiple datasets. A comparison against established harmonics-mitigating algorithms, Modified Least-squared Complex Exponential and PolyMAX, was done to validate the results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源