论文标题

$ p $ laplace方程的非古典解决方案

Non-classical solutions of the $p$-Laplace equation

论文作者

Colombo, Maria, Tione, Riccardo

论文摘要

在本文中,我们回答了Iwaniec和Sbordone的猜想\ cite {ib94},涉及$ p $ -laplace方程的非常弱的解决方案。也就是说,一方面,我们表明$ w^{1,r} $ in $ p \ neq 2 $和$ p \ neq 2 $和$ r> \ max \ {1,p-1 \} $的分配解决方案是经典的弱解决方案,如果它们的弱衍生物属于某些锥体。另一方面,如果未满足这种锥体条件,我们通过凸集成构建非能量分布解决方案,从而对iWaniec和Sbordone的猜想进行负面反应。

In this paper we answer Iwaniec and Sbordone's conjecture \cite{IB94} concerning very weak solutions to the $p$-Laplace equation. Namely, on one hand we show that distributional solutions of the $p$-Laplace equation in $W^{1,r}$ for $p \neq 2$ and $r>\max\{ 1,p-1\}$ are classical weak solutions if their weak derivatives belong to certain cones. On the other hand, we construct via convex integration non-energetic distributional solutions if this cone condition is not met, thus answering negatively Iwaniec and Sbordone's conjecture in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源