论文标题
具有远距离跳跃的几乎有周期运算符的本地化:NASH-MOSER迭代类型可还原性方法
Localization for Almost-Periodic Operators with Power-law Long-range Hopping: A Nash-Moser Iteration Type Reducibility Approach
论文作者
论文摘要
在本文中,我们开发了一种NASH迭代类型可简化的方法,以证明一些$ d $二维离散的几乎有周期的运算符,并具有幂律长距离跳跃。我们还对跳跃的规律性提供了定量的下限。作为应用程序,将\ cite {Sar82,pos83,cra83,bls83}的一些结果推广到幂律跳跃案例。
In this paper we develop a Nash-Moser iteration type reducibility approach to prove the (inverse) localization for some $d$-dimensional discrete almost-periodic operators with power-law long-range hopping. We also provide a quantitative lower bound on the regularity of the hopping. As an application, some results of \cite{Sar82, Pos83, Cra83, BLS83} are generalized to the power-law hopping case.