论文标题

基于自动编码器的在线深度学习

Online Deep Learning based on Auto-Encoder

论文作者

Zhang, Si-si, Liu, Jian-wei, Zuo, Xin, Lu, Run-kun, Lian, Si-ming

论文摘要

在线学习是素描大量实时和高速数据的重要技术手段。尽管这个方向引起了密集的关注,但该领域的大多数文献都忽略了以下三个问题:(1)他们对示例中存在的基本抽象层次潜在信息的看法很少,即使提取这些抽象的层次层次潜在表示也有助于更好地预测示例类标签; (2)在看不见的数据点上预先签名的模型的想法不适用于建模具有不断发展的概率分布的流数据。该挑战称为模型灵活性。因此,考虑到这一点,我们需要设计的在线深度学习模型应该具有可变的基础结构。 (3)此外,融合这些抽象的分层潜在表示至关重要,以实现更好的分类性能,并且在处理数据流的数据流时,我们应该给不同级别的隐式表示信息提供不同级别的权重。为了解决这些问题,我们提出了基于自动编码器(ODLAE)的两阶段在线深度学习。基于自动编码器,考虑重建损失,我们提取了实例的抽象分层潜在表示;基于预测性损失,我们设计了两种融合策略:输出级融合策略,可以通过融合每个隐藏层的编码器的分类结果来获得。和特征级融合策略,它是利用自我注意的机制来融合每个隐藏层输出。最后,为了提高算法的鲁棒性,我们还尝试利用脱氧自动编码器来产生层次的潜在表示。提出了不同数据集的实验结果,以验证我们提出的算法(ODLAE)的有效性优于几个基准。

Online learning is an important technical means for sketching massive real-time and high-speed data. Although this direction has attracted intensive attention, most of the literature in this area ignore the following three issues: (1) they think little of the underlying abstract hierarchical latent information existing in examples, even if extracting these abstract hierarchical latent representations is useful to better predict the class labels of examples; (2) the idea of preassigned model on unseen datapoints is not suitable for modeling streaming data with evolving probability distribution. This challenge is referred as model flexibility. And so, with this in minds, the online deep learning model we need to design should have a variable underlying structure; (3) moreover, it is of utmost importance to fusion these abstract hierarchical latent representations to achieve better classification performance, and we should give different weights to different levels of implicit representation information when dealing with the data streaming where the data distribution changes. To address these issues, we propose a two-phase Online Deep Learning based on Auto-Encoder (ODLAE). Based on auto-encoder, considering reconstruction loss, we extract abstract hierarchical latent representations of instances; Based on predictive loss, we devise two fusion strategies: the output-level fusion strategy, which is obtained by fusing the classification results of encoder each hidden layer; and feature-level fusion strategy, which is leveraged self-attention mechanism to fusion every hidden layer output. Finally, in order to improve the robustness of the algorithm, we also try to utilize the denoising auto-encoder to yield hierarchical latent representations. Experimental results on different datasets are presented to verify the validity of our proposed algorithm (ODLAE) outperforms several baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源