论文标题
通过解决方案歧管分解的局部拉格朗日降低阶级建模
Local Lagrangian reduced-order modeling for Rayleigh-Taylor instability by solution manifold decomposition
论文作者
论文摘要
瑞利 - 泰勒(Rayleigh-Taylor)的不稳定是一种经典的流体动力不稳定性,在科学和工程学的各种学科中,包括天文学,大气科学和气候,地球物理学和融合能量。分析方法不能应用于解释雷利 - 泰勒不稳定性的长期行为,因此需要对全部问题进行数值模拟。但是,为了准确捕获扰动的幅度的增长,对于传统的数值方法,空间和时间离散化都必须非常好,并且长期模拟可能会变得非常昂贵。在本文中,我们提出有效降低订单模型技术,以加速可压缩气体动力学中雷利 - 泰勒不稳定性的模拟。我们介绍了一个通用框架,用于分解解决方案歧管,以构建时间域分区和临时降低的订单模型构建,而ATWOED数量有所不同。我们在此框架中提出了两种实际方法,即分别使用物理时间和穿透距离分解。提出了数值结果以检查所提出的方法的性能。
Rayleigh-Taylor instability is a classical hydrodynamic instability of great interest in various disciplines of science and engineering, including astrophyics, atmospheric sciences and climate, geophysics, and fusion energy. Analytical methods cannot be applied to explain the long-time behavior of Rayleigh-Taylor instability, and therefore numerical simulation of the full problem is required. However, in order to capture the growth of amplitude of perturbations accurately, both the spatial and temporal discretization need to be extremely fine for traditional numerical methods, and the long-time simulation may become prohibitively expensive. In this paper, we propose efficient reduced order model techniques to accelerate the simulation of Rayleigh-Taylor instability in compressible gas dynamics. We introduce a general framework for decomposing the solution manifold to construct the temporal domain partition and temporally-local reduced order model construction with varying Atwood number. We propose two practical approaches in this framework, namely decomposition by using physical time and penetration distance respectively. Numerical results are presented to examine the performance of the proposed approaches.