论文标题
三维高素质重力的方面
Aspects of three-dimensional higher-curvature gravities
论文作者
论文摘要
我们提出了新的结果,其中涉及三个维度的一般高素质重力。最通用的Lagrangian可以作为RICCI标量$ r $,$ \ Mathcal {s} _2 \ equiv \ equiv \ tilde r_ {a}^b \ tilde r_b^a $ and $ r_b^a $ and $ \ mathcal {s} s} _3 \ equiv \ equiv \ equiv \ equiv \ equil_a^b \ tilde r_b^b^c c c c ccc其中$ \ tilde r_ {ab} $是ricci张量的无纹子部分。首先,我们为确切的独立订单数量 - $ n $密度,$ \#(n)$提供一个公式。这满足了身份$ \#(n-6)= \#(n)-n $。然后,我们表明,围绕一个普通的爱因斯坦解决方案进行线性性,通用订单 - $ n \ geq 2 $密度可以写成$ r^n $的线性组合,它不会传播通用的大型吸引力,加上一个不传播的鳞片状模式,$ r^n-12n(n-12n(n-12n(n-1))$ $ \#(n)-2 $密度对线性化方程式产生了巨大贡献。接下来,我们获得了BTZ黑洞的准频率的分析公式,用于一般理论。然后,我们提供了一个递归公式以及一个通用闭合表达式,可用于$ n $密度,该密度不足以满足全息c理论,阐明了它们与出生的污染重力的关系,并证明它们永远不会传播标量模式。我们表明,在每个顺序上都存在$ \#(n-6)$密度,它们在琐碎的C理论上满足了$ \#(n-6),并且它们都与单个六六密度$ω_ {(6)} \ equiv 6 \ equiv 6 \ Mathcal {s} {s}} _3^2-^2-^2- \ Mathcal {s} _2^3 $ _2^3 $。我们证明,在三个维度上也有$ \#(n-6)$ n $通用的准易流密度,所有这些都是“琐碎的”,而在对度量函数方程中没有任何贡献的意义上。事实证明,这种密度与琐碎的理论完全满足了全息c理论。我们评论$ω_ {(6)} $与三维指标的Segre分类的关系。
We present new results involving general higher-curvature gravities in three dimensions. The most general Lagrangian can be written as a function of the Ricci scalar $R$, $\mathcal{S}_2\equiv \tilde R_{a}^b \tilde R_b^a$ and $\mathcal{S}_3\equiv \tilde R_a^b \tilde R_b^c \tilde R_c^a$ where $\tilde R_{ab}$ is the traceless part of the Ricci tensor. First, we provide a formula for the exact number of independent order-$n$ densities, $\#(n)$. This satisfies the identity $\#(n-6)=\#(n)-n$. Then, we show that, linearized around a general Einstein solution, a generic order-$n\geq 2$ density can be written as a linear combination of $R^n$, which does not propagate the generic massive graviton, plus a density which does not propagate the generic scalar mode, $R^n-12n(n-1)R^{n-2}\mathcal{S}_2$, plus $\#(n)-2$ densities which contribute trivially to the linearized equations. Next, we obtain an analytic formula for the quasinormal frequencies of the BTZ black hole for a general theory. Then, we provide a recursive formula as well as a general closed expression for order-$n$ densities which non-trivially satisfy an holographic c-theorem, clarify their relation with Born-Infeld gravities and prove that they never propagate the scalar mode. We show that at each order there exist $\#(n-6)$ densities which satisfy the holographic c-theorem trivially and that all of them are proportional to a single sextic density $Ω_{(6)}\equiv 6 \mathcal{S}_3^2-\mathcal{S}_2^3$. We prove that there are also $\#(n-6)$ order-$n$ Generalized Quasi-topological densities in three dimensions, all of which are "trivial" in the sense of making no contribution to the metric function equation. The set of such densities turns out to coincide exactly with the one of theories trivially satisfying the holographic c-theorem. We comment on the relation of $Ω_{(6)}$ to the Segre classification of three-dimensional metrics.