论文标题
基于AI的癌症检测和分类使用组织病理学图像:系统评价
AI-based Carcinoma Detection and Classification Using Histopathological Images: A Systematic Review
论文作者
论文摘要
组织病理学图像分析是诊断癌症的黄金标准。癌是癌症的亚型,占所有癌症病例的80%以上。鳞状细胞癌和腺癌是癌的两个主要亚型,通过活检载玻片的微观研究诊断。但是,手动微观评估是一个主观且耗时的过程。许多研究人员报告了自动化癌检测和分类的方法。人工智能(AI)在癌症诊断自动化中的使用越来越多,还显示了深层网络模型的使用显着增加。在这篇系统的文献综述中,我们对使用组织病理学图像诊断的最新方法进行了全面的综述。研究是从具有严格包含/排除标准的著名数据库中选择的。我们已经根据癌起源的特定器官对文章进行了分类,并概括了它们的方法。此外,我们总结了有关AI方法的相关文献,强调了关键的挑战和局限性,并提供了对自动癌诊断的未来研究方向的见解。在选定的101篇文章中,大多数研究都在具有不同图像大小的私人数据集上进行了实验,获得了63%至100%的精度。总体而言,这篇评论强调了对基于广义的AI癌诊断系统的需求。此外,希望采用负责任的方法来从多个:应该模仿病理学家评估的大型图像中提取微观特征。
Histopathological image analysis is the gold standard to diagnose cancer. Carcinoma is a subtype of cancer that constitutes more than 80% of all cancer cases. Squamous cell carcinoma and adenocarcinoma are two major subtypes of carcinoma, diagnosed by microscopic study of biopsy slides. However, manual microscopic evaluation is a subjective and time-consuming process. Many researchers have reported methods to automate carcinoma detection and classification. The increasing use of artificial intelligence (AI) in the automation of carcinoma diagnosis also reveals a significant rise in the use of deep network models. In this systematic literature review, we present a comprehensive review of the state-of-the-art approaches reported in carcinoma diagnosis using histopathological images. Studies are selected from well-known databases with strict inclusion/exclusion criteria. We have categorized the articles and recapitulated their methods based on specific organs of carcinoma origin. Further, we have summarized pertinent literature on AI methods, highlighted critical challenges and limitations, and provided insights on future research direction in automated carcinoma diagnosis. Out of 101 articles selected, most of the studies experimented on private datasets with varied image sizes, obtaining accuracy between 63% and 100%. Overall, this review highlights the need for a generalized AI-based carcinoma diagnostic system. Additionally, it is desirable to have accountable approaches to extract microscopic features from images of multiple magnifications that should mimic pathologists' evaluations.