论文标题

(非) - 重力EFT的标记边界

(Non)-projective bounds on gravitational EFT

论文作者

Chiang, Li-Yuan, Huang, Yu-tin, Li, Wei, Rodina, Laurentiu, Weng, He-Chen

论文摘要

在本文中,我们在$ m _ {\ rm pl} $中,对单位性,因果关系和交叉所隐含的四维引力有效领域理论研究了投影和非注射性约束。我们利用数值半明确编程和分析几何分析,从其分散表示中得出$ r^3 $和$ d^{2n} r^4 $的Wilson系数的界限。从前者中,我们得出了耦合比率的投射界限,并观察到允许区域边界的积累点光谱。对于后者,我们考虑了efthedron的非项目的几何形状,我们与文献中已知的$ l $ - ammoment问题有关。这使我们能够超越积极性,并从局部波的虚构部分的单位性中结合上限。这会导致各个系数的尖锐界限,当相对于紫外线量表归一化时,它们是秩序统一的。最后,非标记几何形状还使我们得出了反映低自旋优势假设的最佳边界,从而改善了先前的结果。我们使用简单的线性编程方法来补充分析分析,该方法验证了边界。

In this paper we study both projective and non-projective constraints on four-dimensional gravitational effective fields theories implied from unitarity, causality and crossing, assuming perturbative UV completions in $M_{\rm pl}$. We derive bounds on the Wilson coefficients of $R^3$ and $D^{2n}R^4$ from its dispersive representation, utilizing both numerical semi-definite programming and analytic geometry analysis. From the former, we derive projective bounds on ratios of couplings and observe accumulation point spectrum populating the boundary of the allowed region. For the latter we consider the non-projective geometry of the EFThedron, which we relate to the known $L$-moment problem in the literature. This allows us to move beyond positivity and incorporate the upper bound from unitarity of the imaginary parts of partial waves. This leads to sharp bounds on individual coefficients, which are of order unity when normalized with respect to the UV scale. Finally, the non-projective geometry also allows us to derive optimal bounds reflecting assumptions of low-spin dominance, improving previous results. We complement the analytic analysis with a simple linear programming approach that validates the bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源