论文标题

算术进展术语的串联

Concatenations of Terms of an Arithmetic Progression

论文作者

Luca, Florian, Tabuguia, Bertrand Teguia

论文摘要

令$(u(n))_ {n \ in \ mathbb {n}} $是基础$ b \ in \ mathbb {n} \ setMinus \ {0,1 \} $中天然整数的算术进程。我们考虑以下序列:$ s(n)= \ overline {u(0)u(1)\ cdots u(n)}^b $是通过串联$(u(n))_ {n \ in \ mathbb {n}} $的第一个$ n+1 $ ender congun confuncteene contementenne;(n)}^b $。 $ s_g(n)= \ overline {u(n)u(n-1)\ cdots u(0)}^b $;和$(s _*(n))_ {n \ in \ mathbb {n}} $,由$ s _*(0)= u(0)= u(0)$,$ s _*(n)= \ overline {s(n)s_g(n)s_g(n)s_g(n)s_g(n)我们为这些序列构建明确的公式,并使用线性差异操作员的基本概念来证明它们不是p恢复性的(纯主)。我们还提供了一个替代证明,该证明直接从它们的定义中遵循。我们实现了$(s(n))_ {n \ in \ mathbb {n}} $和$(s_g(n))_ {n \ in \ Mathbb {n}} $在$(u(u(n))_ { \ {0 \} $。

Let $(u(n))_{n\in\mathbb{N}}$ be an arithmetic progression of natural integers in base $b\in\mathbb{N}\setminus \{0,1\}$. We consider the following sequences: $s(n)=\overline{u(0)u(1)\cdots u(n) }^b$ formed by concatenating the first $n+1$ terms of $(u(n))_{n\in\mathbb{N}}$ in base $b$ from the right; $s_g(n) = \overline{u(n)u(n-1)\cdots u(0)}^b$; and $(s_*(n))_{n\in\mathbb{N}}$, given by $s_*(0)=u(0)$, $s_*(n)=\overline{s(n)s_g(n-1)}^b, n\geq 1$. We construct explicit formulae for these sequences and use basic concepts of linear difference operators to prove they are not P-recursive (holonomic). We also present an alternative proof that follows directly from their definitions. We implemented $(s(n))_{n\in\mathbb{N}}$ and $(s_g(n))_{n\in\mathbb{N}}$ in the decimal base when $(u(n))_{n\in\mathbb{N}}=\mathbb{N}\setminus \{0\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源