论文标题
量化解剖结构分割中观察者间变异性的变化推断
Variational Inference for Quantifying Inter-observer Variability in Segmentation of Anatomical Structures
论文作者
论文摘要
通过医学成像数据可见的病变或器官边界通常是模棱两可的,因此导致多阅读器描述的显着差异,即是不确定性的来源。特别是,用磁共振(MR)成像数据量化手动注释的观察者间变异性在建立各种诊断和治疗任务的参考标准中起着至关重要的作用。但是,大多数分割方法只需建模从图像到其单个分割图的映射,而不会考虑注释者的分歧。为了说明观察者间的变异性,而无需牺牲准确性,我们提出了一个新颖的变异推理框架,以模拟具有特定的MR图像,该框架明确表示多阅读器的可变性。具体来说,我们诉诸潜在向量来编码多阅读器的可变性并抵消成像数据中固有的信息丢失。然后,我们应用一个变异自动编码器网络,并优化其证据下限(ELBO),以有效地近似于分割图的分布,给定MR图像。实验结果是用七个注释者的QUBIQ脑生长MRI分割数据集进行的,证明了我们方法的有效性。
Lesions or organ boundaries visible through medical imaging data are often ambiguous, thus resulting in significant variations in multi-reader delineations, i.e., the source of aleatoric uncertainty. In particular, quantifying the inter-observer variability of manual annotations with Magnetic Resonance (MR) Imaging data plays a crucial role in establishing a reference standard for various diagnosis and treatment tasks. Most segmentation methods, however, simply model a mapping from an image to its single segmentation map and do not take the disagreement of annotators into consideration. In order to account for inter-observer variability, without sacrificing accuracy, we propose a novel variational inference framework to model the distribution of plausible segmentation maps, given a specific MR image, which explicitly represents the multi-reader variability. Specifically, we resort to a latent vector to encode the multi-reader variability and counteract the inherent information loss in the imaging data. Then, we apply a variational autoencoder network and optimize its evidence lower bound (ELBO) to efficiently approximate the distribution of the segmentation map, given an MR image. Experimental results, carried out with the QUBIQ brain growth MRI segmentation datasets with seven annotators, demonstrate the effectiveness of our approach.