论文标题
XR流量的时间表征,并应用于预测网络切片
Temporal Characterization of XR Traffic with Application to Predictive Network Slicing
论文作者
论文摘要
在过去的几年中,由于其广泛的工业和商业应用,扩展现实(XR)引起了人们的兴趣,其受欢迎程度有望在未来十年内成倍增长。但是,XR的交互性质施加的严格服务质量(QoS)的约束需要网络切片(NS)解决方案以支持其对无线连接的使用:在这种情况下,准标准比特率(CBR)编码是一个有希望的解决方案,因为它可以增加流的可预测性,从而使网络资源分配更容易。但是,XR流的流量表征仍然是一个很大程度上没有探索的主题,尤其是在此编码的情况下。在这项工作中,我们表征了XR流从真实设置中捕获的4个小时以上的轨迹,分析其时间相关性的4个小时以上,并为将来的帧大小提出了两个预测模型。我们的结果表明,即使是最先进的H.264 CBR模式也可以具有显着的帧大小波动,从而影响NS优化。我们提出的预测模型可以应用于不同的痕迹,甚至可以应用于不同内容,从而实现了非常相似的性能。在简单的NS用例中,我们还显示了网络资源效率与XR QoS之间的权衡。
Over the past few years, eXtended Reality (XR) has attracted increasing interest thanks to its extensive industrial and commercial applications, and its popularity is expected to rise exponentially over the next decade. However, the stringent Quality of Service (QoS) constraints imposed by XR's interactive nature require Network Slicing (NS) solutions to support its use over wireless connections: in this context, quasi-Constant Bit Rate (CBR) encoding is a promising solution, as it can increase the predictability of the stream, making the network resource allocation easier. However, traffic characterization of XR streams is still a largely unexplored subject, particularly with this encoding. In this work, we characterize XR streams from more than 4 hours of traces captured in a real setup, analyzing their temporal correlation and proposing two prediction models for future frame size. Our results show that even the state-of-the-art H.264 CBR mode can have significant frame size fluctuations, which can impact the NS optimization. Our proposed prediction models can be applied to different traces, and even to different contents, achieving very similar performance. We also show the trade-off between network resource efficiency and XR QoS in a simple NS use case.