论文标题

通过物理信息的神经网络对热源系统的温度场反转

Temperature Field Inversion of Heat-Source Systems via Physics-Informed Neural Networks

论文作者

Liu, Xu, Peng, Wei, Gong, Zhiqiang, Zhou, Weien, Yao, Wen

论文摘要

热源系统(TFI-HSS)的温度场倒置对监测系统健康至关重要。尽管已经提出了一些方法来解决TFI-HS,但这些现有方法忽略了数据约束与物理约束之间的相关性,从而导致较低的精度。在这项工作中,我们开发了一种基于物理的神经网络温度场反转(PINN-TFI)方法来解决TFI-HSS任务,并为选择最佳观测位置的观测值(CMCN-PSO)方法选择基于系数的矩阵条件数字位置选择。对于TFI-HSS任务,PINN-TFI方法将约束项编码为损失函数,因此该任务被转换为最小化损耗函数的优化问题。此外,我们发现噪声观察显着影响Pinn-TFI方法的重建性能。为了减轻噪声观察的影响,提出了CMCN-PSO方法来找到最佳位置,其中使用观测值来评估位置。结果表明,PINN-TFI方法可以显着改善预测精度,并且CMCN-PSO方法可以找到良好的位置以获取更健壮的温度场。

Temperature field inversion of heat-source systems (TFI-HSS) with limited observations is essential to monitor the system health. Although some methods such as interpolation have been proposed to solve TFI-HSS, those existing methods ignore correlations between data constraints and physics constraints, causing the low precision. In this work, we develop a physics-informed neural network-based temperature field inversion (PINN-TFI) method to solve the TFI-HSS task and a coefficient matrix condition number based position selection of observations (CMCN-PSO) method to select optima positions of noise observations. For the TFI-HSS task, the PINN-TFI method encodes constrain terms into the loss function, thus the task is transformed into an optimization problem of minimizing the loss function. In addition, we have found that noise observations significantly affect reconstruction performances of the PINN-TFI method. To alleviate the effect of noise observations, the CMCN-PSO method is proposed to find optimal positions, where the condition number of observations is used to evaluate positions. The results demonstrate that the PINN-TFI method can significantly improve prediction precisions and the CMCN-PSO method can find good positions to acquire a more robust temperature field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源