论文标题

在纳米光子学中挤压的几个周期真空吸尘器

Few-cycle vacuum squeezing in nanophotonics

论文作者

Nehra, Rajveer, Sekine, Ryoto, Ledezma, Luis, Guo, Qiushi, Gray, Robert M., Roy, Arkadev, Marandi, Alireza

论文摘要

最基本的量子状态之一是挤压真空,其中二次质量中的噪声小于标准量子噪声极限。在光学挤压真空及其用于众多应用中的利用中已经取得了重大进展。但是,生成,操纵和测量纳米光子学中的量子状态仍然具有挑战性,并且具有广泛可扩展的量子信息系统所需的性能。在这里,我们通过利用超用作脉冲相位敏感的放大器来克服尼橙色锂纳米光子学的这一挑战,用于在同一芯片上挤压状态的发电和全光测量。我们生成一个挤压状态,该状态跨越了超过25个THz的带宽,仅支撑几个光学周期,并测量最大4.9 dB的压缩(推断出$ \ sim $ 11 dB)。这种挤压水平超过了广泛的量子信息系统的要求。我们在纳米光子学中几乎没有光周期挤压状态的生成和测量的结果为具有THZ时钟速率的可伸缩量子信息系统和开放机会的实用途径提供了研究,以研究子循环制度中光的非经典性质。

One of the most fundamental quantum states of light is squeezed vacuum, in which noise in one of the quadratures is less than the standard quantum noise limit. Significant progress has been made in the generation of optical squeezed vacuum and its utilization for numerous applications. However, it remains challenging to generate, manipulate, and measure such quantum states in nanophotonics with performances required for a wide range of scalable quantum information systems. Here, we overcome this challenge in lithium niobate nanophotonics by utilizing ultrashort-pulse phase-sensitive amplifiers for both generation and all-optical measurement of squeezed states on the same chip. We generate a squeezed state spanning over more than 25 THz of bandwidth supporting only a few optical cycles, and measure a maximum of 4.9 dB of squeezing ($\sim$11 dB inferred). This level of squeezing surpasses the requirements for a wide range of quantum information systems. Our results on generation and measurement of few-optical-cycle squeezed states in nanophotonics enable a practical path towards scalable quantum information systems with THz clock rates and open opportunities for studying non-classical nature of light in the sub-cycle regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源