论文标题

藤族班级的高度kähler模型

Equivariant Kähler model for Fujiki's class

论文作者

Jia, Jia, Meng, Sheng

论文摘要

令$ x $为富吉基(Fujiki)类$ \ mathcal {c} $的紧凑型复杂歧管,即承认一个大$(1,1)$ - 类$ [α] $。考虑$ \ text {aut}(x)$ BIHOLOLOMORMORGIC自动形态和$ \ text {aut} _ {[α]}(x)$通过Realback Via撤回。我们表明,$ x $接受$ \ text {aut} _ {[α]}(x)$ - epivariantkähler型号:有一个bimeromormorphic holomorphic地图$ c $σ\ colon \ colon \ colon \ colon \ widetilde {x}} $ \ text {aut} _ {[α]}(x)$通过$σ$抬起荷马晶。 有几个应用程序。我们表明,$ \ text {aut} _ {[α]}(x)$是一个只有有限的组件的谎言组。这概括了Lieberman和Fujiki在Kähler案上的早期结果。我们还表明,$ \ text {aut}(x)$的每个扭转子组几乎都是abelian,如果是扭转组,则$ \ text {aut}(x)$都是有限的。

Let $X$ be a compact complex manifold in Fujiki's class $\mathcal{C}$, i.e., admitting a big $(1,1)$-class $[α]$. Consider $\text{Aut}(X)$ the group of biholomorphic automorphisms and $\text{Aut}_{[α]}(X)$ the subgroup of automorphisms preserving the class $[α]$ via pullback. We show that $X$ admits an $\text{Aut}_{[α]}(X)$-equivariant Kähler model: there is a bimeromorphic holomorphic map $σ\colon \widetilde{X}\to X$ from a Kähler manifold $\widetilde{X}$ such that $\text{Aut}_{[α]}(X)$ lifts holomorphically via $σ$. There are several applications. We show that $\text{Aut}_{[α]}(X)$ is a Lie group with only finitely many components. This generalizes an early result of Lieberman and Fujiki on the Kähler case. We also show that every torsion subgroup of $\text{Aut}(X)$ is almost abelian, and $\text{Aut}(X)$ is finite if it is a torsion group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源