论文标题

Belinskaya的定理是最佳的

Belinskaya's theorem is optimal

论文作者

Carderi, Alessandro, Joseph, Matthieu, Maître, François Le, Tessera, Romain

论文摘要

Belinskaya的定理指出,鉴于具有相同轨道的任何其他转换,以及$ \ mathrm {l}^1 $ Cocycle都必须对其进行反合。我们的主要结果表明,该定理是最佳的:对于所有$ p <1 $,在$ \ mathrm {l}^p $中都不能放松Cocycle上的集成性条件。这也使我们能够回答Kerr和Li的问题:为了进行甲基殖民措施的转换,香农轨道等效性并不能归结为flip-of-of-of-chogigacy。

Belinskaya's theorem states that given an ergodic measure-preserving transformation, any other transformation with the same orbits and an $\mathrm{L}^1$ cocycle must be flip-conjugate to it. Our main result shows that this theorem is optimal: for all $p<1$ the integrability condition on the cocycle cannot be relaxed to being in $\mathrm{L}^p$. This also allows us to answer a question of Kerr and Li: for ergodic measure-preserving transformations, Shannon orbit equivalence doesn't boil down to flip-conjugacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源