论文标题

漂移与班次:解耦趋势和变更点分析

Drift vs Shift: Decoupling Trends and Changepoint Analysis

论文作者

Wu, Haoxuan, Schafer, Toryn L. J., Ryan, Sean, Matteson, David S.

论文摘要

我们在时间序列中引入了一种新方法(漂移)和变更点(移位)(移位)。我们本地自适应模型的鲁棒解耦方法结合了贝叶斯趋势过滤和基于机器学习的正则化。首先应用了过度参数化的贝叶斯动态线性模型(DLM)来表征漂移。然后将加权惩罚的可能性估计量与估计的DLM后验分布配对,以识别偏移。我们展示了如何在存在复杂噪声组件的情况下提供所谓的收缩先验指定的贝叶斯DLMS对潜在趋势的平滑估计。但是,它们无法精确缩小到零可以抑制直接更改点检测。相比之下,受惩罚的可能性方法在定位更改点方面非常有效。但是,它们需要信号和噪声中具有简单模式的数据。所提出的去耦方法结合了两者的优势,即贝叶斯DLM的灵活性与受惩罚估计值的硬阈值属性,以在复杂的现代环境中提供更改点分析。所提出的框架更加稳健,并且可以识别各种变化,包括均值和斜率。它也很容易扩展,以分析时间变化参数模型(例如动态回归)的参数变化。我们说明了在广泛的模拟和应用程序示例中使用几种替代方法的灵活性和对比度的性能和鲁棒性。

We introduce a new approach for decoupling trends (drift) and changepoints (shifts) in time series. Our locally adaptive model-based approach for robustly decoupling combines Bayesian trend filtering and machine learning based regularization. An over-parameterized Bayesian dynamic linear model (DLM) is first applied to characterize drift. Then a weighted penalized likelihood estimator is paired with the estimated DLM posterior distribution to identify shifts. We show how Bayesian DLMs specified with so-called shrinkage priors can provide smooth estimates of underlying trends in the presence of complex noise components. However, their inability to shrink exactly to zero inhibits direct changepoint detection. In contrast, penalized likelihood methods are highly effective in locating changepoints. However, they require data with simple patterns in both signal and noise. The proposed decoupling approach combines the strengths of both, i.e. the flexibility of Bayesian DLMs with the hard thresholding property of penalized likelihood estimators, to provide changepoint analysis in complex, modern settings. The proposed framework is outlier robust and can identify a variety of changes, including in mean and slope. It is also easily extended for analysis of parameter shifts in time-varying parameter models like dynamic regressions. We illustrate the flexibility and contrast the performance and robustness of our approach with several alternative methods across a wide range of simulations and application examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源