论文标题

自动量化和可视化街道树木

Automatic Quantification and Visualization of Street Trees

论文作者

Bahety, Arpit, Saluja, Rohit, Sarvadevabhatla, Ravi Kiran, Subramanian, Anbumani, Jawahar, C. V.

论文摘要

评估街道树木的数量对于评估城市绿化是必不可少的,可以帮助市政当局采用解决方案来识别树木饥饿的街道。随着时间的流逝,它还可以帮助识别具有不同水平的森林砍伐和侵略性的道路。然而,在街头树木量化的地区几乎没有工作。这项工作首先说明了一个精心设计的数据收集设置,用于计算路边树。然后,我们描述了一个旨在可靠检测和量化树木的独特注释程序。我们在一个大约1300印度公路场景的数据集上工作,并用超过2500个街道树木注释。我们此外,我们还使用了五个公开的视频,这些视频涵盖了25公里的道路来计算树木。我们最终建议使用当前对象检测器以及由于周到的集合设置而使用当前对象检测器以及一种新颖而简单的计数算法提出了街道树检测,计数和可视化框架。我们发现,基于路线和内核密度排名(KDR)上树木密度(KDR)的高级可视化提供了一种快速,准确且廉价的方式来识别树木含有的街道。我们在测试图像上获得了83.74%的树木检测图,比基线提高了2.73%。我们提出树木计数密度分类精度(TCDCA)作为测量树密度的评估度量。我们在测试视频中获得了96.77%的TCDCA,比基线相比22.58%,并证明我们的计数模块的性能接近人类水平。源代码:https://github.com/ihubdata-mobility/public-tree-counting。

Assessing the number of street trees is essential for evaluating urban greenery and can help municipalities employ solutions to identify tree-starved streets. It can also help identify roads with different levels of deforestation and afforestation over time. Yet, there has been little work in the area of street trees quantification. This work first explains a data collection setup carefully designed for counting roadside trees. We then describe a unique annotation procedure aimed at robustly detecting and quantifying trees. We work on a dataset of around 1300 Indian road scenes annotated with over 2500 street trees. We additionally use the five held-out videos covering 25 km of roads for counting trees. We finally propose a street tree detection, counting, and visualization framework using current object detectors and a novel yet simple counting algorithm owing to the thoughtful collection setup. We find that the high-level visualizations based on the density of trees on the routes and Kernel Density Ranking (KDR) provide a quick, accurate, and inexpensive way to recognize tree-starved streets. We obtain a tree detection mAP of 83.74% on the test images, which is a 2.73% improvement over our baseline. We propose Tree Count Density Classification Accuracy (TCDCA) as an evaluation metric to measure tree density. We obtain TCDCA of 96.77% on the test videos, with a remarkable improvement of 22.58% over baseline, and demonstrate that our counting module's performance is close to human level. Source code: https://github.com/iHubData-Mobility/public-tree-counting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源