论文标题

无限十六进制是吸引人

Infinite Hex is a draw

论文作者

Hamkins, Joel David, Leonessi, Davide

论文摘要

我们介绍了无限六角形的游戏,将熟悉的有限游戏扩展到了无限六角形晶格上的自然游戏。尽管有限的游戏是第一位球员的胜利,但我们证明了Infinite Hex是一场吸引力 - 两个玩家都有绘画策略。同时,现在在无限的国际象棋和无限草稿中表现出的跨越游戏价值现象,遗憾的是,无限的十六进制并没有出现。仅发生有限的游戏值。确实,无限十六进制中每个游戏值的位置都是本质上的,这意味着赢得比赛仅取决于董事会的固定有限区域。后一个事实在非常普遍的假设下证明了这一点,为所有简单的石材隔板游戏提供了结论。

We introduce the game of infinite Hex, extending the familiar finite game to natural play on the infinite hexagonal lattice. Whereas the finite game is a win for the first player, we prove in contrast that infinite Hex is a draw -- both players have drawing strategies. Meanwhile, the transfinite game-value phenomenon, now abundantly exhibited in infinite chess and infinite draughts, regrettably does not arise in infinite Hex; only finite game values occur. Indeed, every game-valued position in infinite Hex is intrinsically local, meaning that winning play depends only on a fixed finite region of the board. This latter fact is proved under very general hypotheses, establishing the conclusion for all simple stone-placing games.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源