论文标题
基于观测
Observation-based modelling of the energetic storm particle event of 14 July 2012
论文作者
论文摘要
我们使用名为Paradise的能量粒子加速度和传输模型以及名为Euhforia的太阳风和冠状质量射血(CME)模型,对2012年7月14日的高能风暴粒子(ESP)事件进行建模。仿真结果说明了使用模型的功能和局限性。我们表明这些模型捕获了ESP事件的一些基本结构特征。但是,对于某些方面,模拟和观察结果差异。我们描述并在某种程度上评估了Euhforia和Paradise建模链中错误的来源,并讨论了将来如何减轻它们。天堂模型在由Euhforia的理想MHD模块产生的背景太阳风中演变出能量粒子分布。通过使用Euhforia的Spheromak模型模拟CME生成ESP事件的CME,该模型将CME的通量绳近似为无线性的球形球形磁场。此外,开发了一种工具来追踪Euhforia模拟域中的CME驱动的冲击波。该工具在天堂中用于(i)在CME驱动的冲击下连续注入50个KEV质子,并且(ii)包括一个预换货和护套区域,其中能量粒子平行的平行自由路径,$λ_\ paratele $,降低了冲击波。从ESP事件的原位观察结果估算了冲击波时$λ_\并行$的值。对于低于1 MEV的能量,模拟结果与高级组成资源管理器(ACE)观察到的ESP事件的上游和下游组件都非常吻合。这表明这些低能质子主要是星际颗粒加速度的结果。在下游区域,进入以下磁云的进入时,能量粒子强度的急剧下降说明了磁化CME模型的重要性。
We model the energetic storm particle (ESP) event of 14 July 2012 using the energetic particle acceleration and transport model named PARADISE, together with the solar wind and coronal mass ejection (CME) model named EUHFORIA. The simulation results illustrate both the capabilities and limitations of the utilised models. We show that the models capture some essential structural features of the ESP event; however, for some aspects the simulations and observations diverge. We describe and, to some extent, assess the sources of errors in the modelling chain of EUHFORIA and PARADISE and discuss how they may be mitigated in the future. The PARADISE model evolves energetic particle distributions in a background solar wind generated by the ideal MHD module of EUHFORIA. The CME generating the ESP event is simulated by using the spheromak model of EUHFORIA, which approximates the CME's flux rope as a linear force-free spheroidal magnetic field. In addition, a tool was developed to trace CME-driven shock waves in the EUHFORIA simulation domain. This tool is used in PARADISE to (i) inject 50 keV protons continuously at the CME-driven shock and (ii) include a foreshock and a sheath region, in which the energetic particle parallel mean free path, $λ_\parallel$, decreases towards the shock wave. The value of $λ_\parallel$ at the shock wave is estimated from in situ observations of the ESP event. For energies below 1 MeV, the simulation results agree well with both the upstream and downstream components of the ESP event observed by the Advanced Composition Explorer (ACE). This suggests that these low-energy protons are mainly the result of interplanetary particle acceleration. In the downstream region, the sharp drop in the energetic particle intensities is reproduced at the entry into the following magnetic cloud, illustrating the importance of a magnetised CME model.