论文标题

Siggan:用于学习网络中签名关系的对抗模型

SigGAN : Adversarial Model for Learning Signed Relationships in Networks

论文作者

Chakraborty, Roshni, Das, Ritwika, Chandra, Joydeep

论文摘要

图表中的签名链路预测是一个重要的问题,它在不同域中具有应用。这是一个二进制分类问题,可以预测一对节点之间的边缘是正面还是负面。由于其固有的差异,无法直接应用未签名网络中链接预测的方法。此外,必须考虑其他结构性约束,例如签名网络的结构平衡属性,以进行签名的链接预测。最近的签名链接预测方法使用生成模型或判别模型生成节点表示。受生成对抗网络(GAN)模型的最新成功的启发,该模型由几种应用程序中的歧视器和生成器组成,我们提出了一个基于签名网络的基于生成的对抗网络(GAN)模型Siggan。它考虑了签名网络的要求,例如,来自负边缘的信息集成,正面和负边数的高度不平衡以及结构平衡理论。将几个现实世界数据集上的最先进技术的性能与最先进的技术进行比较,证实了Siggan的有效性。

Signed link prediction in graphs is an important problem that has applications in diverse domains. It is a binary classification problem that predicts whether an edge between a pair of nodes is positive or negative. Existing approaches for link prediction in unsigned networks cannot be directly applied for signed link prediction due to their inherent differences. Further, additional structural constraints, like, the structural balance property of the signed networks must be considered for signed link prediction. Recent signed link prediction approaches generate node representations using either generative models or discriminative models. Inspired by the recent success of Generative Adversarial Network (GAN) based models which comprises of a discriminator and generator in several applications, we propose a Generative Adversarial Network (GAN) based model for signed networks, SigGAN. It considers the requirements of signed networks, such as, integration of information from negative edges, high imbalance in number of positive and negative edges and structural balance theory. Comparing the performance with state of the art techniques on several real-world datasets validates the effectiveness of SigGAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源