论文标题

多线性rihaczek分布的维纳汞齐空间的界限表征

Characterization of boundedness on Wiener amalgam spaces of multilinear Rihaczek distributions

论文作者

Guo, Weichao, Zhao, Guoping

论文摘要

在本文中,我们为从维也纳汞合金空间到调制和傅立叶调制空间的多线性rihaczek分布的界限提供了几种特征。此外,我们建立了具有独立意义的至关重要的自我完善属性。作为应用,在几种典型情况下为界限建立了尖锐的指数。相应地,还建立了在Wiener Amalgam空间上具有符号和傅立叶调制空间符号的伪差算子的界限。在某些典型情况下,我们还为假差异操作员的界限提供了尖锐的指数,包括\ cite [imrn,(10):1860-1893,(2010)] {Corderonicola20101010imrni}和\ cite [imrn,(2010)和\ cite [imrn,(10):1860-1893,(10): (2017)] {cunanan2017jofaaa}。

In this paper, we give several characterizations for the boundedness of multilinear Rihaczek distributions acting from Wiener amalgam spaces to modulation and Fourier modulation spaces. Moreover, we establish the crucial self-improvement property which has its independent significance. As applications, sharp exponents are established for the boundedness in several typical cases. Correspondingly, the boundedness of pseudodifferential operators on Wiener amalgam spaces with symbols in modulation and Fourier modulation spaces are also established. In some typical cases, we also give the sharp exponents for the boundedness of pseudodifferential operators, including the recapture and essential extensions of the main results in \cite[IMRN, (10):1860-1893, (2010)]{CorderoNicola2010IMRNI} and \cite[JFAA, 23(4):810-816, (2017)]{Cunanan2017JoFAaA}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源