论文标题

在莫里的猜想的背景下,用于研究准蔬菜的数值方法

Numerical approaches for investigating quasiconvexity in the context of Morrey's conjecture

论文作者

Voss, Jendrik, Martin, Robert J., Sander, Oliver, Kumar, Siddhant, Kochmann, Dennis M., Neff, Patrizio

论文摘要

确定给定功能是否为Quasiconvex通常是一项艰巨的任务。在这里,我们讨论了许多数值方法,这些方法可用于搜索给定函数$ w $的Quasiconvexity的反例。我们将使用平面各向同性级别凸函数\ [[ w _ {\ rm magic}^+(f)= \ frac {λ_{\ rm max}}} {λ_{λ_{\ rm min}} - \ log \ log \ frac {λ_ {\ rm max}}} {\ rm max}}} f = \ frac {λ_ {\ rm max}}} {λ_{\ rm min}}}+2 \logλ_ {\ rm min} \ ,, \ ,, \]其中$λ_ {\ rm max} \ rm max} \geqλ_ {在先前的贡献中,我们已经表明,此功能的准综合性意味着所有等级 - 一凸的同性恋平面能量$ w:\ operatorname {gl}^+(2)\ rightarrow \ rightarrow \ rightarrow \ mathbb {r} $具有附加性的dolumetric-ischoric split form and Ischoric split formeconcoric split s eff in form of norm of n form conf inf。 w(f)= w _ {\ rm iso}(f)+w _ {\ rm vol}(\ det f)= \ widetilde w _ {\ rm iso} \ bigG(\ frac {f} {f} \]带有凹面的体积部分。因此,关于莫里的公开问题,这个示例特别感兴趣,即排名是否意味着在平面案例中的icalvexity。

Deciding whether a given function is quasiconvex is generally a difficult task. Here, we discuss a number of numerical approaches that can be used in the search for a counterexample to the quasiconvexity of a given function $W$. We will demonstrate these methods using the planar isotropic rank-one convex function \[ W_{\rm magic}^+(F)=\frac{λ_{\rm max}}{λ_{\rm min}}-\log\frac{λ_{\rm max}}{λ_{\rm min}}+\log\det F=\frac{λ_{\rm max}}{λ_{\rm min}}+2\logλ_{\rm min}\,, \] where $λ_{\rm max}\geqλ_{\rm min}$ are the singular values of $F$, as our main example. In a previous contribution, we have shown that quasiconvexity of this function would imply quasiconvexity for all rank-one convex isotropic planar energies $W:\operatorname{GL}^+(2)\rightarrow\mathbb{R}$ with an additive volumetric-isochoric split of the form \[ W(F)=W_{\rm iso}(F)+W_{\rm vol}(\det F)=\widetilde W_{\rm iso}\bigg(\frac{F}{\sqrt{\det F}}\bigg)+W_{\rm vol}(\det F) \] with a concave volumetric part. This example is therefore of particular interest with regard to Morrey's open question whether or not rank-one convexity implies quasiconvexity in the planar case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源