论文标题

随机线性模型的有限样品推理和临界维度

Finite samples inference and critical dimension for stochastically linear models

论文作者

Spokoiny, Vladimir

论文摘要

本说明的目的是陈述有关惩罚最大似然估计器(PMLE)的性质的几个一般结果,以及在非反对设置中以及可能大甚至无限参数维度中参数模型的后验分布。我们考虑一类特殊的随机线性平滑(SLS)模型满足两个主要条件:模型参数中的对数可能性的随机分量是线性的,而预期的对数可能性是平滑的函数。如果预期的对数可能是凹的,则主要结果简化了很多。对于PMLE,我们建立了许多有限的样本界限,涉及其浓度和较大的偏差以及Fisher和Wilks的扩展。后来的结果将有关MLE的经典渐近渔民和Wilks定理扩展到具有较大参数维度的非质子设置,这可能取决于样本尺寸。对于后验分布,我们的主要结果指出了后部的高斯近似,可以看作是伯恩斯坦著名的伯恩斯坦 - von Mises定理的有限样品类似物。在各个范围内,其余部分被明确给出,可以根据有效的样本量和有效参数维度进行评估。结果是尺寸和坐标。尽管有普遍性,但所有提出的边界几乎是锋利的,并且可以作为简单的推论获得经典的渐近结果。 logit回归的有趣情况和使用平滑或截断的对数密度的估计来指定结果并解释主要概念。

The aim of this note is to state a couple of general results about the properties of the penalized maximum likelihood estimators (pMLE) and of the posterior distribution for parametric models in a non-asymptotic setup and for possibly large or even infinite parameter dimension. We consider a special class of stochastically linear smooth (SLS) models satisfying two major conditions: the stochastic component of the log-likelihood is linear in the model parameter, while the expected log-likelihood is a smooth function. The main results simplify a lot if the expected log-likelihood is concave. For the pMLE, we establish a number of finite sample bounds about its concentration and large deviations as well as the Fisher and Wilks expansion. The later results extend the classical asymptotic Fisher and Wilks Theorems about the MLE to the non-asymptotic setup with large parameter dimension which can depend on the sample size. For the posterior distribution, our main result states a Gaussian approximation of the posterior which can be viewed as a finite sample analog of the prominent Bernstein--von Mises Theorem. In all bounds, the remainder is given explicitly and can be evaluated in terms of the effective sample size and effective parameter dimension. The results are dimension and coordinate free. In spite of generality, all the presented bounds are nearly sharp and the classical asymptotic results can be obtained as simple corollaries. Interesting cases of logit regression and of estimation of a log-density with smooth or truncation priors are used to specify the results and to explain the main notions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源