论文标题

tu $^2 $ frg-通用费米子模型中的截断统一功能重新归一化组的可扩展方法

TU$^2$FRG -- a scalable approach for truncated unity functional renormalization group in generic fermionic models

论文作者

Profe, Jonas B., Kennes, Dante M.

论文摘要

描述凝结物质阶段的出现是物理学的核心挑战之一。为此,已经开发了许多数值和分析方法,每种方法都有自己的优势和局限性。功能重归其化组是在效率和准确性之间桥接的这些方法之一。在本文中,我们得出了一种新的截断统一(TU)方法,以统一实体和动量空间TU,称为Tu $^2 $ frg。与传统动量(TU)FRG相比,这种形式主义显着改善了缩放率,当应用于损坏翻译对称性的大型单元模型和模型时。

Describing the emergence of phases of condensed matter is one of the central challenges in physics. For this purpose many numerical and analytical methods have been developed, each with their own strengths and limitations. The functional renormalization group is one of these methods bridging between efficiency and accuracy. In this paper we derive a new truncated unity (TU) approach unifying real- and momentum space TU, called TU$^2$FRG. This formalism significantly improves the scaling compared to conventional momentum (TU)FRG when applied to large unit-cell models and models where the translational symmetry is broken.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源