论文标题

日落:来自地球同步卫星数据的太阳能辐照

SunCast: Solar Irradiance Nowcasting from Geosynchronous Satellite Data

论文作者

Kumaresan, Dhileeban, Wang, Richard, Martinez, Ernesto, Cziva, Richard, Todeschini, Alberto, Reed, Colorado J, Vahabi, Hossein

论文摘要

当云层覆盖光伏(PV)面板时,面板产生的功率量迅速波动。因此,为了在电网上保持足够的能量以符合需求,公用事业公司依靠通常来自化石燃料的储备电源,因此污染了环境。准确的短期光伏电力预测使操作员能够最大程度地利用从光伏面板获得的功率,并安全地减少化石燃料来源所需的储备能量。尽管几项研究开发了机器学习模型来预测特定PV生成设施的太阳辐照度,但几乎没有完成在全球范围内对短期太阳辐照度进行建模的工作。此外,已经开发的模型是专有的,并且具有无法公开可用或依赖计算要求的数值天气预测(NWP)模型的体系结构。在这里,我们提出了一个卷积长的短期内存网络模型,该模型将太阳能现象视为下一个框架预测问题,比NWP模型更有效,并且具有简单,可重复的体系结构。我们的模型可以预测整个北美的太阳辐照度在没有GPU的一台机器上60秒内最多3个小时,并且在2个月的数据进行评估时,RMSE为120 w/m2。

When cloud layers cover photovoltaic (PV) panels, the amount of power the panels produce fluctuates rapidly. Therefore, to maintain enough energy on a power grid to match demand, utilities companies rely on reserve power sources that typically come from fossil fuels and therefore pollute the environment. Accurate short-term PV power prediction enables operators to maximize the amount of power obtained from PV panels and safely reduce the reserve energy needed from fossil fuel sources. While several studies have developed machine learning models to predict solar irradiance at specific PV generation facilities, little work has been done to model short-term solar irradiance on a global scale. Furthermore, models that have been developed are proprietary and have architectures that are not publicly available or rely on computationally demanding Numerical Weather Prediction (NWP) models. Here, we propose a Convolutional Long Short-Term Memory Network model that treats solar nowcasting as a next frame prediction problem, is more efficient than NWP models and has a straightforward, reproducible architecture. Our models can predict solar irradiance for entire North America for up to 3 hours in under 60 seconds on a single machine without a GPU and has a RMSE of 120 W/m2 when evaluated on 2 months of data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源