论文标题

非定位与无与伦比密度的两相流量的局部扩散界面模型的收敛

Convergence of a Nonlocal to a Local Diffuse Interface Model for Two-Phase Flow with Unmatched Densities

论文作者

Abels, Helmut, Terasawa, Yutaka

论文摘要

我们证明,具有不同密度的不可压缩流体的两相流量具有不同的密度,具有非局部Cahn-Hilliard方程与具有标准“局部” cahn-Hilliard方程的相应系统的弱解。分析是在具有足够平滑的有界结构域的情况下进行的,具有无滑动边界条件的速度和Cahn-Hilliard方程的Neumann边界条件。该证明基于在单个Cahn-Hilliard方程和紧凑性参数中使用的相应结果,用于证明扩散接口模型的弱解决方案。

We prove convergence of suitable subsequences of weak solutions of a diffuse interface model for the two-phase flow of incompressible fluids with different densities with a nonlocal Cahn-Hilliard equation to weak solutions of the corresponding system with a standard "local" Cahn-Hilliard equation. The analysis is done in the case of a sufficiently smooth bounded domain with no-slip boundary condition for the velocity and Neumann boundary conditions for the Cahn-Hilliard equation. The proof is based on the corresponding result in the case of a single Cahn-Hilliard equation and compactness arguments used in the proof of existence of weak solutions for the diffuse interface model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源