论文标题

齿轮网:逐步进行双重学习,用于弱监督域的适应

GearNet: Stepwise Dual Learning for Weakly Supervised Domain Adaptation

论文作者

Xie, Renchunzi, Wei, Hongxin, Feng, Lei, An, Bo

论文摘要

本文研究了弱监督的域适应性(WSDA)问题,在那里我们只能访问带有嘈杂标签的源域,我们需要从中将有用的信息传输到未标记的目标域。尽管已经进行了一些有关此问题的研究,但其中大多数仅利用从源域到目标域的单向关系。在本文中,我们提出了一个称为Gearnet的通用范式来利用两个域之间的双边关系。具体而言,我们将这两个域作为不同的输入进行交替训练两个模型,而不对称的kullback-leibler损耗用于选择性地匹配同一域中的两个模型的预测。这种交互式学习模式可实现隐式标签噪声取消,并利用源域和目标域之间的相关性。因此,我们的齿轮网具有巨大的潜力,可以提高各种现有WSDL方法的性能。全面的实验结果表明,通过配备我们的齿轮网,可以显着改善现有方法的性能。

This paper studies weakly supervised domain adaptation(WSDA) problem, where we only have access to the source domain with noisy labels, from which we need to transfer useful information to the unlabeled target domain. Although there have been a few studies on this problem, most of them only exploit unidirectional relationships from the source domain to the target domain. In this paper, we propose a universal paradigm called GearNet to exploit bilateral relationships between the two domains. Specifically, we take the two domains as different inputs to train two models alternately, and asymmetrical Kullback-Leibler loss is used for selectively matching the predictions of the two models in the same domain. This interactive learning schema enables implicit label noise canceling and exploits correlations between the source and target domains. Therefore, our GearNet has the great potential to boost the performance of a wide range of existing WSDL methods. Comprehensive experimental results show that the performance of existing methods can be significantly improved by equipping with our GearNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源