论文标题

Rydberg原子的单个时间脉冲调节的参数受控镜头门

Single temporal-pulse-modulated parameterized controlled-phase gate for Rydberg atoms

论文作者

Li, X. X., Shao, X. Q., Li, Weibin

论文摘要

我们提出了一项绝热协议,用于通过第二个共振线通过对称的两光量激发过程,通过对称的两光原子进行中性原子的受控门cz $_θ$,$^{87} $ rb $ 6p $ in $^{87} $ rb,并具有单速量 - 偶然的 - 量度 - 近距离模块状态和基础状态。依靠不同的绝热路径,可以通过校准静态脉冲的形状来单独地累积CZ $_θ$ GATE的相位因子$θ$,在逻辑量子状态$ | 11 \ rangle $中,该$ | 11 \ rangle $,在该脉冲开始和脉冲开始时严格的零振幅不需要。对于$θ$的广泛范围,我们可以在$ 99.7 \%的$ 99.7 \%$少于$ 1〜μ $ s的情况下获得CZ $_θ$ Gate的保真度,在中间和Rydberg州的自发发射的情况下。特别是对于$θ=π$,我们通过考虑各种实验性缺陷,例如多普勒的偏移,Rydberg-Rydberg的相互作用强度的波动,不均匀的Rabi频率和驱动场的噪声等来对CZ门的性能进行基准测试。该栅极协议可抵抗脉冲振幅的波动和调整纠缠阶段的灵活方法的鲁棒性,这可能有助于实现近期噪声中间量子量子(NISQ)计算和使用中性原子系统的算法。

We propose an adiabatic protocol for implementing a controlled-phase gate CZ$_θ$ with continuous $θ$ of neutral atoms through a symmetrical two-photon excitation process via the second resonance line, $6P$ in $^{87}$Rb, with a single-temporal-modulation-coupling of the ground state and intermediate state. Relying on different adiabatic paths, the phase factor $θ$ of CZ$_θ$ gate can be accumulated on the logic qubit state $|11\rangle$ alone by calibrating the shape of the temporal pulse where strict zero amplitudes at the start and end of the pulse are not needed. For a wide range of $θ$, we can obtain the fidelity of CZ$_θ$ gate over $99.7\%$ in less than $1~μ$s, in the presence of spontaneous emission from intermediate and Rydberg states. And in particular for $θ=π$, we benchmark the performance of the CZ gate by taking into account various experimental imperfections, such as Doppler shifts, fluctuation of Rydberg-Rydberg interaction strength, inhomogeneous Rabi frequency, and noise of driving fields, etc, and show that the predicted fidelity is able to maintain at about $98.4\%$ after correcting the measurement error. This gate protocol provides a robustness against the fluctuation of pulse amplitude and a flexible way for adjusting the entangling phase, which may contribute to the experimental implementation of near-term noisy intermediate-scale quantum (NISQ) computation and algorithm with neutral-atom systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源