论文标题
通过增强的全面方面偏好学习,多域域协作建议
Multi-Sparse-Domain Collaborative Recommendation via Enhanced Comprehensive Aspect Preference Learning
论文作者
论文摘要
跨域推荐(CDR)一直在吸引研究人员越来越关注其减轻推荐系统中数据稀疏问题的能力。但是,现有的单目标或双目标CDR方法经常遭受两个缺点,假设至少一个丰富的领域以及对域中不变的偏好的严重依赖,这在现实世界中是不切实际的,在现实世界中,稀疏性无处不在,可能会降低用户偏好学习。为了克服这些问题,我们提出了多目标跨域建议的多域域协作建议(MSDCR)模型。与传统的CDR方法不同,MSDCR将多个相关域视为稀疏,并且可以同时改善每个域中的建议性能。我们建议MSDCR的多域分离网络(MDSN)和封闭式方面偏好增强(GAPE)模块,以通过在其他领域的互补方面偏好来增强用户在域中的特定领域特定方面偏好,在其他领域中,可以通过范围培训来保留特定的域名偏好的独特性,并可以通过对象来保留跨越的群体和范围。同时,我们为MSDCR提出了一个多域自适应网络(MDAN),以捕获用户的域不变方面优先。通过集成增强的域特异性方面偏好和域不变方面的偏好,MSDCR可以全面了解每个稀疏域中用户的偏好。最后,在实际数据集上进行的广泛实验表明,MSDCR与最先进的单域推荐模型和CDR模型相比具有显着优势。
Cross-domain recommendation (CDR) has been attracting increasing attention of researchers for its ability to alleviate the data sparsity problem in recommender systems. However, the existing single-target or dual-target CDR methods often suffer from two drawbacks, the assumption of at least one rich domain and the heavy dependence on domain-invariant preference, which are impractical in real world where sparsity is ubiquitous and might degrade the user preference learning. To overcome these issues, we propose a Multi-Sparse-Domain Collaborative Recommendation (MSDCR) model for multi-target cross-domain recommendation. Unlike traditional CDR methods, MSDCR treats the multiple relevant domains as all sparse and can simultaneously improve the recommendation performance in each domain. We propose a Multi-Domain Separation Network (MDSN) and a Gated Aspect Preference Enhancement (GAPE) module for MSDCR to enhance a user's domain-specific aspect preferences in a domain by transferring the complementary aspect preferences in other domains, during which the uniqueness of the domain-specific preference can be preserved through the adversarial training offered by MDSN and the complementarity can be adaptively determined by GAPE. Meanwhile, we propose a Multi-Domain Adaptation Network (MDAN) for MSDCR to capture a user's domain-invariant aspect preference. With the integration of the enhanced domain-specific aspect preference and the domain-invariant aspect preference, MSDCR can reach a comprehensive understanding of a user's preference in each sparse domain. At last, the extensive experiments conducted on real datasets demonstrate the remarkable superiority of MSDCR over the state-of-the-art single-domain recommendation models and CDR models.