论文标题

与二元数据的内核密度估计器的均匀推断

Uniform Inference for Kernel Density Estimators with Dyadic Data

论文作者

Cattaneo, Matias D., Feng, Yingjie, Underwood, William G.

论文摘要

当关注数量与网络的边缘相关联时,通常会遇到二元数据。因此,它在统计,计量经济学和许多其他数据科学学科中起着重要作用。我们考虑了统一估计二元Lebesgue密度函数的问题,该问题的重点是采用二元经验过程形式的非参数核心估计器。我们的主要贡献包括二元组核密度估计器的最小均匀均匀收敛速率,以及相关的标准化和学生化$ t $过程的强近似结果。一致的方差估计器可以为未知密度函数的有效且可行的统一置信带的构建。我们通过开发新颖的反事实密度估计和二元数据的推理方法来展示结果的广泛适用性,该方法可用于因果推理和程序评估。二元分布的一个关键特征是它们在支持数据的某些点上可能会“退化”,这使我们的分析变得有些微妙。尽管如此,我们的统一推断方法仍然对这种点的潜在存在仍然有力。为了实现目的,我们讨论了基于正半准协方差估计器,平方误差最佳带宽选择器和稳健偏置校正技术的推理程序。我们在模拟和现实世界中的贸易数据中说明了我们方法的经验有限样本性能,为此,我们在不同年份观察到的观察到和反事实贸易分布之间进行了比较。我们关于强近似和最大不平等的技术结果具有潜在的独立利益。

Dyadic data is often encountered when quantities of interest are associated with the edges of a network. As such it plays an important role in statistics, econometrics and many other data science disciplines. We consider the problem of uniformly estimating a dyadic Lebesgue density function, focusing on nonparametric kernel-based estimators taking the form of dyadic empirical processes. Our main contributions include the minimax-optimal uniform convergence rate of the dyadic kernel density estimator, along with strong approximation results for the associated standardized and Studentized $t$-processes. A consistent variance estimator enables the construction of valid and feasible uniform confidence bands for the unknown density function. We showcase the broad applicability of our results by developing novel counterfactual density estimation and inference methodology for dyadic data, which can be used for causal inference and program evaluation. A crucial feature of dyadic distributions is that they may be "degenerate" at certain points in the support of the data, a property making our analysis somewhat delicate. Nonetheless our methods for uniform inference remain robust to the potential presence of such points. For implementation purposes, we discuss inference procedures based on positive semi-definite covariance estimators, mean squared error optimal bandwidth selectors and robust bias correction techniques. We illustrate the empirical finite-sample performance of our methods both in simulations and with real-world trade data, for which we make comparisons between observed and counterfactual trade distributions in different years. Our technical results concerning strong approximations and maximal inequalities are of potential independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源