论文标题
通过在异质图上共同建模用户,连接和多模式内容来了解政治两极分化
Understanding Political Polarization via Jointly Modeling Users, Connections and Multimodal Contents on Heterogeneous Graphs
论文作者
论文摘要
了解社会平台上的政治两极分化很重要,因为当公众在同质社区中流传时,公众的舆论可能会变得越来越极端,从而可能在现实世界中造成损害。自动检测社交媒体使用者的政治意识形态可以帮助更好地理解政治两极分化。但是,由于意识形态标签的稀缺性,多模式内容的复杂性以及耗时的数据收集过程的成本,这是具有挑战性的。在这项研究中,我们采用异构图神经网络来共同建模用户特征,多模式的帖子内容以及两部分图中的用户项目关系,以学习无需意识形态标签的全面有效的用户嵌入。我们将框架应用于有关经济和公共卫生主题的在线讨论。然后,学习的嵌入被用来检测政治意识形态并了解政治两极分化。我们的框架的表现优于单峰,早期/晚期的融合基线和同质GNN框架,在两个社交媒体数据集中,该领域的绝对增益至少为9%。更重要的是,我们的工作不需要耗时的数据收集过程,这可以更快地检测,进而使决策者可以及时进行分析和设计政策以应对危机。我们还表明,我们的框架学习有意义的用户嵌入,并可以帮助更好地理解政治两极分化。观察到用户描述,主题,图像和转发/报价活动的级别的显着差异。我们用于解码用户互动的框架在理解政治两极分化方面显示出广泛的适用性。此外,可以将其扩展到用户 - 项目两分信息网络,以供其他应用程序(例如内容和产品建议)。
Understanding political polarization on social platforms is important as public opinions may become increasingly extreme when they are circulated in homogeneous communities, thus potentially causing damage in the real world. Automatically detecting the political ideology of social media users can help better understand political polarization. However, it is challenging due to the scarcity of ideology labels, complexity of multimodal contents, and cost of time-consuming data collection process. In this study, we adopt a heterogeneous graph neural network to jointly model user characteristics, multimodal post contents as well as user-item relations in a bipartite graph to learn a comprehensive and effective user embedding without requiring ideology labels. We apply our framework to online discussions about economy and public health topics. The learned embeddings are then used to detect political ideology and understand political polarization. Our framework outperforms the unimodal, early/late fusion baselines, and homogeneous GNN frameworks by a margin of at least 9% absolute gain in the area under the receiver operating characteristic on two social media datasets. More importantly, our work does not require a time-consuming data collection process, which allows faster detection and in turn allows the policy makers to conduct analysis and design policies in time to respond to crises. We also show that our framework learns meaningful user embeddings and can help better understand political polarization. Notable differences in user descriptions, topics, images, and levels of retweet/quote activities are observed. Our framework for decoding user-content interaction shows wide applicability in understanding political polarization. Furthermore, it can be extended to user-item bipartite information networks for other applications such as content and product recommendation.