论文标题
与点螺纹杀戮场的极端扩散
Extreme diffusion with point-sink killing field
论文作者
论文摘要
我们在这里研究了从间隔的边界的最快扩散粒子的逃生时间,并具有点键杀伤来源。杀戮代表了导致移动的布朗颗粒的概率去除的退化。我们渐近地计算最快的粒子逃脱并获得极端统计分布所需的平均时间。这些计算依赖于使用依赖Green的函数和Duhamel的公式的Fokker-Planck方程的时间依赖性通量的显式表达式。我们获得了几个点杀手的一般公式,显示了它们如何直接相互作用。通过Brownian模拟评估本公式对最快的平均极端时间的有效性范围。最后,我们讨论了神经元突触处早期钙信号传导的一些应用。
We study here the escape time for the fastest diffusing particle from the boundary of an interval with point-sink killing sources. Killing represents a degradation that leads to the probabilistic removal of the moving Brownian particles. We compute asymptotically the mean time it takes for the fastest particle escaping alive and obtain the extreme statistic distribution. These computations relies on an explicit expression for the time dependent flux of the Fokker-Planck equation using the time dependent Green's function and Duhamel's formula. We obtain a general formula for several point-sink killing, showing how they directly interact. The range of validity of the present formula for the mean extreme times of the fastest is evaluated with Brownian simulations. Finally, we discuss some applications to the early calcium signaling at neuronal synapses.