论文标题
关于准芬斯勒各向异性方程的pohozaev身份
On the Pohozaev identity for quasilinear Finsler anisotropic equations
论文作者
论文摘要
在本文中,我们得出了quasilinear方程的poHozaev身份\ begin {equation} \ tag {$ e $} {in} \,\,ω,\ end {equation}涉及各向异性的Finsler operator $ - \ operatatorName {div}(b'(h(\ nabla u))\ nabla h(\ nabla u(\ nabla u))$。特别是,通过媒介字段上的良好规律性结果$ b'(h(\ nabla u))\ nabla h(\ nabla u)$,我们以直接的方式证明了弱解决方案的身份。
In this paper we derive the Pohozaev identity for quasilinear equations \begin{equation}\tag{$E$}\label{eq:p} -\operatorname{div}(B'(H(\nabla u))\nabla H(\nabla u))=g(x, u) \quad \text {in}\,\, Ω, \end{equation} involving the anisotropic Finsler operator $-\operatorname{div}(B'(H(\nabla u))\nabla H(\nabla u))$. In particular, by means of fine regularity results on the vectorial field $B'(H(\nabla u))\nabla H(\nabla u)$, we prove the identity for weak solutions and in a direct way.