论文标题

解释性工具,使未来的现场实时行星探索能够深入学习

Explainability Tools Enabling Deep Learning in Future In-Situ Real-Time Planetary Explorations

论文作者

Lundstrom, Daniel, Huyen, Alexander, Mevada, Arya, Yun, Kyongsik, Lu, Thomas

论文摘要

深度学习(DL)已被证明是一种有效的机器学习和计算机视觉技术。基于DL的图像细分,对象识别和分类将有助于许多原地火星漫游者任务,例如路径计划和伪影识别/提取。但是,大多数深度神经网络(DNN)架构非常复杂,以至于它们被认为是“黑匣子”。在本文中,我们使用集成梯度来描述每个神经元对输出类的归因。它提供了一组解释性工具(ET),该工具打开了DNN的黑匣子,以便可以对神经元对类别分类的个体贡献进行排名和可视化。每个密集层中的神经元通过测量神经元对阶级投票的预期贡献的映射和排名。神经元的重要性是根据其正确或不正确的贡献对输出类别的正确贡献以及对不正确类的抑制或增强的重要性,并由每个类的大小加权。 ET提供了一个界面来修剪网络,以增强高排名神经元并去除低表现的神经元。 ET技术将使DNN在小型嵌入式系统中实施更小,更有效。它还导致更可解释和可测试的DNN,从而使系统更容易验证\&验证。 ET技术的目的是使未来的原位行星探索任务中采用DL。

Deep learning (DL) has proven to be an effective machine learning and computer vision technique. DL-based image segmentation, object recognition and classification will aid many in-situ Mars rover tasks such as path planning and artifact recognition/extraction. However, most of the Deep Neural Network (DNN) architectures are so complex that they are considered a 'black box'. In this paper, we used integrated gradients to describe the attributions of each neuron to the output classes. It provides a set of explainability tools (ET) that opens the black box of a DNN so that the individual contribution of neurons to category classification can be ranked and visualized. The neurons in each dense layer are mapped and ranked by measuring expected contribution of a neuron to a class vote given a true image label. The importance of neurons is prioritized according to their correct or incorrect contribution to the output classes and suppression or bolstering of incorrect classes, weighted by the size of each class. ET provides an interface to prune the network to enhance high-rank neurons and remove low-performing neurons. ET technology will make DNNs smaller and more efficient for implementation in small embedded systems. It also leads to more explainable and testable DNNs that can make systems easier for Validation \& Verification. The goal of ET technology is to enable the adoption of DL in future in-situ planetary exploration missions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源