论文标题

弯曲正方形管道中小粒子惯性迁移的动力学

Dynamics of small particle inertial migration in curved square ducts

论文作者

Ha, Kyung, Harding, Brendan, Bertozzi, Andrea L., Stokes, Yvonne M.

论文摘要

微通道在微流体应用中是众所周知的,用于控制和分离微芯和细胞。通常,流程体验惯性效应中的对象,导致动态与基础通道流动动力学不同。本文认为,通过平方横截面的弯曲导管悬浮在流中的小中性浮力球形颗粒。该粒子经历了沿管道的一级流动的干扰引起的惯性升力力的组合,并从横截面中的次级涡流中拖动,从而驱动了横截面内粒子的迁移。我们构建了一个简化的模型,该模型保留了力场的核心拓扑,但取决于单个参数$κ$,从而量化了两种力的相对强度。我们表明,$κ$是动态系统的分叉参数,它描述了管道横截面中粒子的运动。在$κ$的大值下,在管道的每个上半部分中都有一个吸引的极限周期。在小$κ$时,我们发现颗粒迁移到四个稳定焦点之一。在这些极端之间,有一个$κ$的中间范围,所有颗粒都迁移到单个稳定的焦点。指出极限周期和焦点的位置随$κ$的值而变化,因此该行为表明,对于合适的颗粒混合物,可以选择管道弯曲半径以按大小隔离颗粒。我们评估在唯一稳定节点附近聚焦颗粒所需的时间和轴向距离,这决定了粒子分离所需的管道长度。

Microchannels are well-known in microfluidic applications for the control and separation of microdroplets and cells. Often the objects in the flow experience inertial effects, resulting in dynamics that is a departure from the underlying channel flow dynamics. This paper considers small neutrally buoyant spherical particles suspended in flow through a curved duct having a square cross-section. The particle experiences a combination of inertial lift force induced by the disturbance from the primary flow along the duct, and drag from the secondary vortices in the cross-section, which drive migration of the particle within the cross-section. We construct a simplified model that preserves the core topology of the force field yet depends on a single parameter $κ$, quantifying the relative strength of the two forces. We show that $κ$ is a bifurcation parameter for the dynamical system that describes motion of the particle in the cross section of the duct. At large values of $κ$ there exists an attracting limit cycle, in each of the upper and lower halves of the duct. At small $κ$ we find that particles migrate to one of four stable foci. Between these extremes, there is an intermediate-range of $κ$ for which all particles migrate to a single stable focus. Noting that the positions of the limit cycles and foci vary with the value of $κ$, this behavior indicates that, for a suitable particle mixture, duct bend radius might be chosen to segregate particles by size. We evaluate the time and axial distance required to focus particles near the unique stable node, which determines the duct length required for particle segregation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源