论文标题

来自Pulsar定时阵列频带中原始磁场的重力波信号

Gravitational wave signal from primordial magnetic fields in the Pulsar Timing Array frequency band

论文作者

Pol, Alberto Roper, Caprini, Chiara, Neronov, Andrii, Semikoz, Dmitri

论文摘要

Nanograv,Parkes,欧洲和国际Pulsar时正时阵列(PTA)合作报告了证据证明了一个常见过程,该过程可能与1--100 NHz频率范围内的随机引力波背景(SGWB)相对应。我们考虑了早期宇宙中磁水动力学(MHD)湍流产生的情景,这是由非螺旋原始磁场在能量尺度上引起的,与夸克约束相变的相对应。我们执行MHD模拟以研究磁场的动力学演化并计算所得的SGWB。我们表明,通过假设磁各向异性应力是恒定的,在与涡质周转时间相关的时间间隔内,可以很好地估算来自模拟的SGWB输出。我们在此假设下得出的分析频谱具有与GW源持续时间相对应的频率变化,我们使用数值模拟确认。我们将SGWB信号与PTA数据进行比较,以限制SGWB采购的温度尺度,以及初始磁场的幅度和特征尺度。我们发现,发电温度被限制在1--200 MEV范围内,当时的磁场幅度必须为$> 1 $ \%的$> 1 $ \%,并且磁场的特性量表约为地平线量表的$> 10 $ \%。我们表明,该磁场的湍流衰变将导致重组的一个场,可以帮助减轻哈勃张力,并可以通过使用伽马射线望远镜(如Cherenkov望远镜阵列)进行大规模结构的空隙中的测量进行测试。

The NANOGrav, Parkes, European, and International Pulsar Timing Array (PTA) Collaborations have reported evidence for a common-spectrum process that can potentially correspond to a stochastic gravitational wave background (SGWB) in the 1--100 nHz frequency range. We consider the scenario in which this signal is produced by magnetohydrodynamic (MHD) turbulence in the early Universe, induced by a nonhelical primordial magnetic field at the energy scale corresponding to the quark confinement phase transition. We perform MHD simulations to study the dynamical evolution of the magnetic field and compute the resulting SGWB. We show that the SGWB output from the simulations can be very well approximated by assuming that the magnetic anisotropic stress is constant in time, over a time interval related to the eddy turnover time. The analytical spectrum that we derive under this assumption features a change of slope at a frequency corresponding to the GW source duration that we confirm with the numerical simulations. We compare the SGWB signal with the PTA data to constrain the temperature scale at which the SGWB is sourced, as well as the amplitude and characteristic scale of the initial magnetic field. We find that the generation temperature is constrained to be in the 1--200 MeV range, the magnetic field amplitude must be $>1$\% of the radiation energy density at that time, and the magnetic field characteristic scale is constrained to be $>10$\% of the horizon scale. We show that the turbulent decay of this magnetic field will lead to a field at recombination that can help to alleviate the Hubble tension and can be tested by measurements in the voids of the Large Scale Structure with gamma-ray telescopes like the Cherenkov Telescope Array.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源