论文标题
基于参数粒子的Vlasov-Poisson方程的自适应符号模型阶
Adaptive symplectic model order reduction of parametric particle-based Vlasov-Poisson equation
论文作者
论文摘要
基于粒子的动力学等离子体模型的高分辨率模拟通常需要大量的颗粒,因此通常在计算上棘手。这在多传奇模拟中加剧了这一点,其中问题取决于一组参数。在这项工作中,我们得出了由于参数vlasov-Poisson方程的几何粒子近似而导致的半差异哈密顿系统的订单模型。由于该问题的非疾病性和高度非线性的性质只能在本地及时还原,因此我们采用了一种非线性减少的基础方法,其中减少的相空间会随着时间的推移而发展。该策略允许大幅减少模拟粒子的数量,但是与Vlasov-Poisson耦合相关的非线性算子的评估在计算上仍然是昂贵的。我们提出了一个新的非线性术语降低,该术语结合了适应性参数采样和超还原技术来解决这一问题。所提出的方法允许将其取决于粒子数量的操作与取决于所需参数的实例的操作。特别是,在每个时间步中,通过动态模式分解(DMD)和通过离散的经验插值方法(DEIM)近似电势。这些近似是从从过去的时间窗口中获得的数据构建的,该数据是参数的几个选定值,以确保计算有效的适应性。所得的DMD-DEIM降低的动力学系统保留了完整模型的哈密顿结构,提供了良好的溶液近似值,并且可以以降低的计算成本解决。
High-resolution simulations of particle-based kinetic plasma models typically require a high number of particles and thus often become computationally intractable. This is exacerbated in multi-query simulations, where the problem depends on a set of parameters. In this work, we derive reduced order models for the semi-discrete Hamiltonian system resulting from a geometric particle-in-cell approximation of the parametric Vlasov-Poisson equations. Since the problem's non-dissipative and highly nonlinear nature makes it reducible only locally in time, we adopt a nonlinear reduced basis approach where the reduced phase space evolves in time. This strategy allows a significant reduction in the number of simulated particles, but the evaluation of the nonlinear operators associated with the Vlasov-Poisson coupling remains computationally expensive. We propose a novel reduction of the nonlinear terms that combines adaptive parameter sampling and hyper-reduction techniques to address this. The proposed approach allows decoupling the operations having a cost dependent on the number of particles from those that depend on the instances of the required parameters. In particular, in each time step, the electric potential is approximated via dynamic mode decomposition (DMD) and the particle-to-grid map via a discrete empirical interpolation method (DEIM). These approximations are constructed from data obtained from a past temporal window at a few selected values of the parameters to guarantee a computationally efficient adaptation. The resulting DMD-DEIM reduced dynamical system retains the Hamiltonian structure of the full model, provides good approximations of the solution, and can be solved at a reduced computational cost.