论文标题
在神经机构平台中评估使用EMG数据和物理模拟的肌肉协同作用
Evaluating Muscle Synergies with EMG Data and Physics Simulation in the Neurorobotics Platform
论文作者
论文摘要
尽管我们可以测量肌肉活动并分析其激活模式,但我们对单个肌肉如何影响产生的关节扭矩的了解一无所知。众所周知,它们由脊髓中的电路控制,该系统比皮质的理解良好。了解肌肉对联合扭矩的贡献将提高我们对人类肢体控制的理解。我们提出了一个新型框架,以使用肌电图(EMG)数据告知的物理模拟来检查生物力学的控制。这些信号驱动了神经机构平台(NRP)中的虚拟肌肉骨骼模型,然后我们使用该模型来评估结果扭矩。我们使用我们的框架来分析在等距膝关节扩展研究中收集的原始EMG数据,以识别驱动肌肉骨骼下肢模型的协同作用。所得的膝盖扭矩被用作遗传算法(GA)的参考,以生成新的模拟激活模式。在平台上,GA找到了与观察到的扭矩相匹配的解决方案。可能的解决方案包括与从人类研究中提取的相似的协同作用。此外,GA还发现了与生物学不同的激活模式,同时仍产生相同的膝盖扭矩。 NRP形成了一个高度模块化的集成模拟平台,可以在硅实验中进行。我们认为,我们的框架可以研究任务过程中对肌肉的神经力学控制,否则这是不可能的。
Although we can measure muscle activity and analyze their activation patterns, we understand little about how individual muscles affect the joint torque generated. It is known that they are controlled by circuits in the spinal cord, a system much less well understood than the cortex. Knowing the contribution of the muscles towards a joint torque would improve our understanding of human limb control. We present a novel framework to examine the control of biomechanics using physics simulations informed by electromyography (EMG) data. These signals drive a virtual musculoskeletal model in the Neurorobotics Platform (NRP), which we then use to evaluate resulting joint torques. We use our framework to analyze raw EMG data collected during an isometric knee extension study to identify synergies that drive a musculoskeletal lower limb model. The resulting knee torques are used as a reference for genetic algorithms (GA) to generate new simulated activation patterns. On the platform the GA finds solutions that generate torques matching those observed. Possible solutions include synergies that are similar to those extracted from the human study. In addition, the GA finds activation patterns that are different from the the biological ones while still producing the same knee torque. The NRP forms a highly modular integrated simulation platform allowing these in silico experiments. We argue that our framework allows for research of the neurobiomechanical control of muscles during tasks, which would otherwise not be possible.