论文标题

格拉斯曼尼亚流向凝血系统的应用

Applications of Grassmannian flows to coagulation systems

论文作者

Doikou, Anastasia, Malham, Simon J. A., Stylianidis, Ioannis, Wiese, Anke

论文摘要

我们证明了多少类Smoluchowski型凝血模型可以实现为乘法草个性流,因此可以线性化,因此可以从这种意义上进行整合。首先,我们证明具有恒定频率内核的一般smoluchowski型方程,该方程包括大量此类模型,可以将其视为乘法grassmannian流动。其次,我们确定其他几种相关的常数内核模型也可以实现。其中包括:Gallay-Mielke Coarsening模型; Derrida-雷达(Retaux)逐渐转化模型和一般的mutliple合并凝血模型。第三,我们展示了如何将添加剂和乘法频率内核案例实现为级别的分析性grassmannian流。

We demonstrate how many classes of Smoluchowski-type coagulation models can be realised as multiplicative Grassmannian flows and are therefore linearisable, and thus integrable in this sense. First, we prove that a general Smoluchowski-type equation with a constant frequency kernel, that encompasses a large class of such models, is realisable as a multiplicative Grassmannian flow. Second, we establish that several other related constant kernel models can also be realised as such. These include: the Gallay--Mielke coarsening model; the Derrida--Retaux depinning transition model and a general mutliple merger coagulation model. Third, we show how the additive and multiplicative frequency kernel cases can be realised as rank-one analytic Grassmannian flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源