论文标题
网络PEC:智能行为指纹识别以检测对众包频谱传感器的攻击
CyberSpec: Intelligent Behavioral Fingerprinting to Detect Attacks on Crowdsensing Spectrum Sensors
论文作者
论文摘要
综合传感和通信(ISAC)是一种使用众包谱传感器来帮助管理频谱稀缺的新型范式。但是,众所周知的资源约束频谱传感器的漏洞以及具有物理访问的用户操纵的可能性使他们的保护范围复杂,以使其针对频谱传感数据伪造(SSDF)攻击。最近的大多数文献建议使用行为指纹印刷和机器/深度学习(ML/DL)来改善类似的网络安全问题。然而,这些技术在资源受限的设备中的适用性,影响频谱数据完整性的攻击的影响以及适合异构传感器类型的模型的性能和可扩展性仍然是开放的挑战。为了提高局限性,这项工作提出了七次影响频谱传感器的SSDF攻击,并引入了CybersPec,这是一种使用设备行为指纹印刷的ML/DL面向框架,以检测影响资源约束频谱传感器的SSDF攻击产生的异常。 CybersPEC已在电感(电感镜)中实现和验证,这是一个真正的人群RF监视平台,在该平台中,已在不同的传感器中执行了所提出的SSDF攻击的几种配置。具有不同无监督的ML/DL模型的实验池已经证明了网络PEC检测可接受的时间范围内的先前攻击的适用性。
Integrated sensing and communication (ISAC) is a novel paradigm using crowdsensing spectrum sensors to help with the management of spectrum scarcity. However, well-known vulnerabilities of resource-constrained spectrum sensors and the possibility of being manipulated by users with physical access complicate their protection against spectrum sensing data falsification (SSDF) attacks. Most recent literature suggests using behavioral fingerprinting and Machine/Deep Learning (ML/DL) for improving similar cybersecurity issues. Nevertheless, the applicability of these techniques in resource-constrained devices, the impact of attacks affecting spectrum data integrity, and the performance and scalability of models suitable for heterogeneous sensors types are still open challenges. To improve limitations, this work presents seven SSDF attacks affecting spectrum sensors and introduces CyberSpec, an ML/DL-oriented framework using device behavioral fingerprinting to detect anomalies produced by SSDF attacks affecting resource-constrained spectrum sensors. CyberSpec has been implemented and validated in ElectroSense, a real crowdsensing RF monitoring platform where several configurations of the proposed SSDF attacks have been executed in different sensors. A pool of experiments with different unsupervised ML/DL-based models has demonstrated the suitability of CyberSpec detecting the previous attacks within an acceptable timeframe.