论文标题

密集,磁化和旋转夸克物质的手性相变

Chiral phase transition of a dense, magnetized and rotating quark matter

论文作者

Mehr, S. M. A. Tabatabaee, Taghinavaz, F.

论文摘要

我们研究了Nambu Jona-Lasinio模型中密集,磁化和旋转夸克物质的手性对称性恢复/破坏,包括$ n_f = 2 $和$ n_c = 3 $数字的口味和颜色。施加光谱边界条件以及能级的积极性,导致磁场和旋转场之间的相关性,使得强磁化的血浆无法再旋转。我们在零和有限温度下求解间隙方程。在有限温度和重龙化学势$μ_b$下,我们在不同情况下绘制相图$ t_c(μ_b)$和$ t_c(rΩ)$。结果,我们始终观察到反旋转催化意味着通过增加$rΩ$减少$ t_c $。但是磁场在相图中具有更复杂的结构。对于缓慢旋转的等离子体,我们发现$ t_c $通过增加$ eb $而减少,而在快速旋转的等离子体中,我们看到$ t_c $通过增加$ eb $而增加。同样,我们通过同时解决有效作用的第一和第二个衍生物的方程来同时求解临界终点的位置。

We investigate the chiral symmetry restoration/breaking of a dense, magnetized and rotating quark matter within the Nambu Jona-Lasinio model including $N_f=2$ and $N_c=3$ numbers of flavors and colors, respectively. Imposing the spectral boundary conditions, as well as the positiveness of energy levels, lead to a correlation between the magnetic and rotation fields such that strongly magnetized plasma can not rotate anymore. We solve the gap equation at zero and finite temperature. At finite temperature and baryon chemical potential $μ_B$, we sketch the phase diagrams $T_c(μ_B)$ and $T_c(RΩ)$ in different cases. As a result, we always observe inverse-rotational catalysis mean to decrease $T_c$ by increasing $RΩ$. But the magnetic field has a more complex structure in the phase diagram. For slowly rotating plasma, we find that $T_c$ decreases by increasing $eB$, while in the fast rotating plasma we see that $T_c$ increases by increasing $eB$. Also, we locate exactly the position of Critical End Point by solving the equations of first and second derivatives of effective action with respect to the order parameters, simultaneously.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源