论文标题

使用有监督的机器学习预测伽马射线大声AGN的红移:第2部分

Predicting the redshift of gamma-ray loud AGNs using Supervised Machine Learning: Part 2

论文作者

Narendra, Aditya, Gibson, Spencer James, Dainotti, Maria Giovanna, Bogdan, Malgorzata, Pollo, Agnieszka, Liodakis, Ioannis, Poliszczuk, Artem

论文摘要

测量活性银河核(AGN)的红移需要使用耗时和昂贵的光谱分析。但是,获得AGN的红移测量至关重要,因为它可以使AGN人群研究,提供对恒星形成速率,光度函数和密度速度演变的见解。因此,需要替代红移测量技术。在此项目中,我们旨在使用费米伽马射线太空望远镜的4LAC数据发布(DR2)目录来训练能够可靠预测红移的机器学习模型。此外,该项目旨在通过新的4LAC目录来改善和扩展机器学习(ML)方法的预测能力(Dainotti等人)。 (2021)。此外,我们实施功能工程,以将参数空间和偏置校正技术扩展到我们的最终结果。这项研究使用了集合方法内的其他机器学习技术,即超级验证者,以前在Dainotti等人(2021)中使用。此外,我们还测试了一种称为排序L-One惩罚估计(斜率)的新型ML模型。使用这些方法,我们为那些没有光谱红移测量的AGN提供了估计的红移值的目录。这些估计值可以作为社区的红移参考,以验证,因为更新的费米目录将通过更红移的测量发布。

Measuring the redshift of active galactic nuclei (AGNs) requires the use of time-consuming and expensive spectroscopic analysis. However, obtaining redshift measurements of AGNs is crucial as it can enable AGN population studies, provide insight into the star formation rate, the luminosity function, and the density rate evolution. Hence, there is a requirement for alternative redshift measurement techniques. In this project, we aim to use the Fermi gamma-ray space telescope's 4LAC Data Release (DR2) catalog to train a machine learning model capable of predicting the redshift reliably. In addition, this project aims at improving and extending with the new 4LAC Catalog the predictive capabilities of the machine learning (ML) methodology published in Dainotti et al. (2021). Furthermore, we implement feature engineering to expand the parameter space and a bias correction technique to our final results. This study uses additional machine learning techniques inside the ensemble method, the SuperLearner, previously used in Dainotti et al.(2021). Additionally, we also test a novel ML model called Sorted L-One Penalized Estimation (SLOPE). Using these methods we provide a catalog of estimated redshift values for those AGNs that do not have a spectroscopic redshift measurement. These estimates can serve as a redshift reference for the community to verify as updated Fermi catalogs are released with more redshift measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源