论文标题

使用MRI的新的深层混合动力增强和集合学习的脑肿瘤分析

A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor Analysis using MRI

论文作者

Zahoor, Mirza Mumtaz, Qureshi, Shahzad Ahmad, Khan, Saddam Hussain, Khan, Asifullah

论文摘要

脑肿瘤分析对于及时诊断和治疗患者的有效治疗很重要。肿瘤分析由于肿瘤形态(例如大小,位置,质地和异常外观)而具有挑战性。在这方面,提出了一种新型的两阶段深度学习框架来检测和分类磁共振图像(MRIS)中的脑肿瘤。在第一阶段,提出了一种新型的深层增强特征和集合分类器(DBF-EC)方案,以有效地检测健康个体的肿瘤MRI图像。通过定制且良好的深度卷积神经网络(CNN)实现了深度增强的特征空间,因此可以融入机器学习(ML)分类器的合奏中。虽然在第二阶段,提出了一种新的杂种基于融合的脑肿瘤分类方法,包括动态静态特征和ML分类器来分类不同的肿瘤类型。动态特征是从提出的脑培养CNN中提取的,该脑部CNN仔细地学习了各种肿瘤的异态和不一致的行为,而静态特征则是使用HOG提取的。在两个标准基准数据集上验证了所提出的两相脑肿瘤分析框架的有效性;从Kaggle和Figshare收集,其中包含不同类型的肿瘤,包括神经胶质瘤,脑膜瘤,垂体和正常图像。实验结果证明,所提出的DBF-EC检测方案优于表现,并实现了准确性(99.56%),精度(0.9991),召回率(0.9899),F1得分(0.9945),MCC(0.9892)和AUC-PR(0.9990)。尽管分类方案,但在召回率(0.9913),精度(0.9906),F1得分(0.9909)和精度(99.20%)上,在召回率(0.9913),精度(0.9906),精度(0.9906),精度(0.9906)方面的共同雇用却显着提高了性能。

Brain tumors analysis is important in timely diagnosis and effective treatment to cure patients. Tumor analysis is challenging because of tumor morphology like size, location, texture, and heteromorphic appearance in the medical images. In this regard, a novel two-phase deep learning-based framework is proposed to detect and categorize brain tumors in magnetic resonance images (MRIs). In the first phase, a novel deep boosted features and ensemble classifiers (DBF-EC) scheme is proposed to detect tumor MRI images from healthy individuals effectively. The deep boosted feature space is achieved through the customized and well-performing deep convolutional neural networks (CNNs), and consequently, fed into the ensemble of machine learning (ML) classifiers. While in the second phase, a new hybrid features fusion-based brain tumor classification approach is proposed, comprised of dynamic-static feature and ML classifier to categorize different tumor types. The dynamic features are extracted from the proposed BRAIN-RENet CNN, which carefully learns heteromorphic and inconsistent behavior of various tumors, while the static features are extracted using HOG. The effectiveness of the proposed two-phase brain tumor analysis framework is validated on two standard benchmark datasets; collected from Kaggle and Figshare containing different types of tumor, including glioma, meningioma, pituitary, and normal images. Experimental results proved that the proposed DBF-EC detection scheme outperforms and achieved accuracy (99.56%), precision (0.9991), recall (0.9899), F1-Score (0.9945), MCC (0.9892), and AUC-PR (0.9990). While the classification scheme, the joint employment of the deep features fusion of proposed BRAIN-RENet and HOG features improves performance significantly in terms of recall (0.9913), precision (0.9906), F1-Score (0.9909), and accuracy (99.20%) on diverse datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源