论文标题
文本生成的验证语言模型:调查
Pretrained Language Models for Text Generation: A Survey
论文作者
论文摘要
文本生成旨在通过输入数据以人类语言生产出合理且可读性的文本。深度学习的复兴尤其是在基于预训练的语言模型(PLM)的神经产生模型的帮助下,尤其是该领域。基于PLM的文本生成被视为学术界和行业的一种有希望的方法。在本文中,我们提供了有关PLM在文本生成中利用的调查。我们首先引入将PLM应用于文本生成的三个关键方面:1)如何将输入编码为保存可以融合到PLM的输入语义的表示形式; 2)如何设计有效的PLM作为生成模型; 3)如何有效地在给定参考文本的情况下优化PLM,并确保生成的文本满足特殊文本属性。然后,我们展示了这些方面出现的主要挑战,以及可能为它们的解决方案所带来的解决方案。我们还包括基于PLM的各种有用资源和典型的文本生成应用程序的摘要。最后,我们强调了未来的研究方向,这将进一步改善这些文本生成的PLM。这项综合调查旨在帮助对文本生成问题感兴趣的研究人员,以学习基于PLM的核心概念,主要技术和该领域的最新发展。
Text Generation aims to produce plausible and readable text in a human language from input data. The resurgence of deep learning has greatly advanced this field, in particular, with the help of neural generation models based on pre-trained language models (PLMs). Text generation based on PLMs is viewed as a promising approach in both academia and industry. In this paper, we provide a survey on the utilization of PLMs in text generation. We begin with introducing three key aspects of applying PLMs to text generation: 1) how to encode the input into representations preserving input semantics which can be fused into PLMs; 2) how to design an effective PLM to serve as the generation model; and 3) how to effectively optimize PLMs given the reference text and to ensure that the generated texts satisfy special text properties. Then, we show the major challenges arisen in these aspects, as well as possible solutions for them. We also include a summary of various useful resources and typical text generation applications based on PLMs. Finally, we highlight the future research directions which will further improve these PLMs for text generation. This comprehensive survey is intended to help researchers interested in text generation problems to learn the core concepts, the main techniques and the latest developments in this area based on PLMs.