论文标题
植物表型的自适应转移学习
Adaptive Transfer Learning for Plant Phenotyping
论文作者
论文摘要
植物表型(Guo等,2021; Pieruschka etal。2019)着重研究与植物生长有关的植物的多种特征。更具体地说,通过准确测量植物的解剖学,个体理论,生理和生化特性,它允许识别在不同环境中植物生长的关键因素。一种常用的方法是使用高光谱反射率预测植物的性状(Yendrek等,2017; Wang等,2021)。但是,在不同植物的不同环境中,植物表型中高光谱反射率数据的数据分布可能有所不同。也就是说,分别在不同环境中为一种植物学习机器学习模型在计算上是很广泛的。为了解决这个问题,我们专注于研究植物表型中现代机器学习模型的知识传递性。更具体地说,这项工作旨在回答以下问题。 (1)传统机器学习模型的性能如何,例如部分最小二乘回归(PLSR),高斯工艺回归(GPR)和多层感知器(MLP),受植物表型的注释样品数量的影响? (2)基于神经网络的转移学习模型能否改善植物表型的性能? (3)是否可以通过使用无限宽度的隐藏层进行植物表型来改善基于神经网络的转移学习?
Plant phenotyping (Guo et al. 2021; Pieruschka et al. 2019) focuses on studying the diverse traits of plants related to the plants' growth. To be more specific, by accurately measuring the plant's anatomical, ontogenetical, physiological and biochemical properties, it allows identifying the crucial factors of plants' growth in different environments. One commonly used approach is to predict the plant's traits using hyperspectral reflectance (Yendrek et al. 2017; Wang et al. 2021). However, the data distributions of the hyperspectral reflectance data in plant phenotyping might vary in different environments for different plants. That is, it would be computationally expansive to learn the machine learning models separately for one plant in different environments. To solve this problem, we focus on studying the knowledge transferability of modern machine learning models in plant phenotyping. More specifically, this work aims to answer the following questions. (1) How is the performance of conventional machine learning models, e.g., partial least squares regression (PLSR), Gaussian process regression (GPR) and multi-layer perceptron (MLP), affected by the number of annotated samples for plant phenotyping? (2) Whether could the neural network based transfer learning models improve the performance of plant phenotyping? (3) Could the neural network based transfer learning be improved by using infinite-width hidden layers for plant phenotyping?